Mitochondrial lipid transport at a glance

2013 ◽  
Vol 126 (23) ◽  
pp. 5317-5323 ◽  
Author(s):  
M. Scharwey ◽  
T. Tatsuta ◽  
T. Langer
2016 ◽  
Vol 214 (1) ◽  
pp. 9-11 ◽  
Author(s):  
Bruno Mesmin

Little is known about how mitochondrial lipids reach inner membrane–localized metabolic enzymes for phosphatidylethanolamine synthesis. Aaltonen et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201602007) and Miyata et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201601082) now report roles for two mitochondrial complexes, Ups2–Mdm35 and mitochondrial contact site and cristae organizing system, in the biosynthesis and transport of mitochondrial lipids.


2017 ◽  
Vol 474 (4) ◽  
pp. 557-569 ◽  
Author(s):  
Paula M. Miotto ◽  
Gregory R. Steinberg ◽  
Graham P. Holloway

The obligatory role of carnitine palmitoyltransferase-I (CPT-I) in mediating mitochondrial lipid transport is well established, a process attenuated by malonyl-CoA (M-CoA). However, the necessity of reducing M-CoA concentrations to promote lipid oxidation has recently been challenged, suggesting external regulation on CPT-I. Since previous work in hepatocytes suggests the involvement of the intermediate filament fraction of the cytoskeleton in regulating CPT-I, we investigated in skeletal muscle if CPT-I sensitivity for M-CoA inhibition could be regulated by the intermediate filaments, and whether AMP-activated protein kinase (AMPK) could be involved in this process. Chemical disruption (3,3′-iminodipropionitrile, IDPN) of the intermediate filaments did not alter mitochondrial respiration or sensitivity for numerous substrates (palmitoyl-CoA, ADP, palmitoyl carnitine and pyruvate). In contrast, IDPN reduced CPT-I sensitivity for M-CoA inhibition in permeabilized muscle fibers, identifying M-CoA kinetics as a specific target for intermediate filament regulation. Importantly, exercise mimicked the effect of IDPN on M-CoA sensitivity, suggesting that intermediate filament disruption in vivo is physiologically important for CPT-I regulation. To ascertain a potential mechanism, since AMPK is activated during exercise, AMPK β1β2-KO mice were utilized in an attempt to ablate the observed exercise response. Unexpectedly, these mice displayed drastic attenuation in resting M-CoA sensitivity, such that exercise and IDPN could not further alter M-CoA sensitivity. These data suggest that AMPK is not required for the regulation of the intermediate filament interaction with CPT-I. Altogether, these data highlight that M-CoA sensitivity is important for regulating mitochondrial lipid transport. Moreover, M-CoA sensitivity appears to be regulated by intermediate filament interaction with CPT-I, a process that is important when metabolic homeostasis is challenged.


2016 ◽  
Vol 44 (2) ◽  
pp. 479-485 ◽  
Author(s):  
Xeni Miliara ◽  
Stephen Matthews

Mitochondria depend on a tightly regulated supply of phospholipids. The protein of relevant evolutionary and lymphoid interest (PRELI)/Ups1 family together with its mitochondrial chaperones [TP53-regulated inhibitor of apoptosis 1 (TRIAP1)/Mdm35] represents a unique heterodimeric lipid-transfer system that is evolutionary conserved from yeast to man. Recent X-ray crystal structures of the human and yeast systems are compared and discuss here and shed new insight into the mechanism of the PRELI/Ups1 system.


2021 ◽  
Vol 27 (S1) ◽  
pp. 1422-1422
Author(s):  
Gira Bhabha ◽  
Damian Ekiert ◽  
Nicolas Coudray ◽  
Georgia Isom ◽  
Mark MacRae ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document