scholarly journals The Cytoproct of Paramecium Caudatum: Structure and Function, Microtubules, and Fate of Food Vacuole Membranes

1974 ◽  
Vol 14 (3) ◽  
pp. 611-631
Author(s):  
RICHARD D. ALLEN ◽  
R. W. WOLF

The cytoproct or cell anus of Paramecium caudatum was studied, using light optics and electron microscopy, at known times before, during and following food vacuole egestion. This was accomplished by microscopically observing single cells, fixing these cells at specific times and finally serial sectioning these individually processed cells. The cytoproct, at rest, is a long narrow ridge along the posterior suture. It contains 2 uniquely positioned components which identify this structure as the cytoproct: piles of fibres along the inside surfaces of the ridge, and microtubules passing from the epiplasm at the summit of the ridge down into the cytoplasm. The plasma membrane is continuous over the top of the ridge. The cortical basal bodies adjacent to the ridge have bundles of microtubules passing into the cytoplasm from an opaque plaque at their proximal ends. These 2 sets of microtubules may function in guiding the food vacuoles to the cytoproct. A model is presented in which motive forces generated between the microtubules and the food vacuole membrane bring the food vacuole to the cytoproct and, in addition, pull the cytoproct lips apart so that the food vacuole membrane and plasma membrane come into contact and fuse together, thus opening the food vacuole to the outside. The plasma membrane increases in area between the parting lips, possibly, as the result of intercalation of membrane vesicles into the plasma membrane at the top of the ridge. Immediately after this opening is formed the food vacuole membrane changes from a smooth topography to a highly convoluted one. The membrane is engulfed through a process of endocytosis resulting in an accumulation of membranous fragments in the cytoplasm below the cytoproct. The endocytic forces probably bring about the restitution of the cytoproct ridge by pulling the lips back together as the membrane is engulfed. A filamentous meshwork underlying the food vacuole membrane may be active in this endocytic process.

1979 ◽  
Vol 35 (1) ◽  
pp. 217-227
Author(s):  
R.D. Allen ◽  
R.W. Wolf

Exocytosis and membrane recycling at the cytoproct (cell anus) of Tetrahymena pyriformis were studied using thin-section electron microscopy. Single cells were fixed at specific times relative to the elimination of the vacuole's contents—before elimination, at elimination, 3–5 s and 10–15 s following elimination. The closed cytoproct is distinguished from other pellicular regions by a single membrane at the cell surface which is circumscribed by an electron-opaque flange that links or welds the plasma membrane to the underlying alveolar margins. Microtubules originating in the flange pass inward where they lie over, and possibly guide, the approaching food vacuoles to the cytoproct. Food facuoles near the cytoproct are also accompanied by coats of microfilaments. These microfilaments appear to be active in the channelling and endocytosis of food vacuole membrane. Upon cytoproct opening the plasma membrane and food vacuole membrane fuse. Elimination seems to be essentially passive and is accomplished by re-engulfment of the old food vacuole membrane which is constantly associated with microfilaments. Reengulfment of all the food vacuole membrane requires 10–15 s and results in a closed cytoproct. The membrane remnants embedded in microfilaments form a cluster under the closed cytoproct. At the periphery of this cluster remnants take the shape of 70–130-nm spherical vesicles or 0.2-micrometer-long flattened vesicles.


2013 ◽  
Vol 200 (4) ◽  
pp. 373-383 ◽  
Author(s):  
Graça Raposo ◽  
Willem Stoorvogel

Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, and RNA. Deficiencies in our knowledge of the molecular mechanisms for EV formation and lack of methods to interfere with the packaging of cargo or with vesicle release, however, still hamper identification of their physiological relevance in vivo. In this review, we focus on the characterization of EVs and on currently proposed mechanisms for their formation, targeting, and function.


1990 ◽  
Vol 259 (4) ◽  
pp. F559-F564 ◽  
Author(s):  
M. M. Elias ◽  
G. C. Lunazzi ◽  
S. Passamonti ◽  
B. Gazzin ◽  
M. Miccio ◽  
...  

Bilirubin and phthalein dyes are taken up by the liver via a carrier-mediated mechanism operated at least in part by bilitranslocase (BTL). Because they also undergo renal transport, the presence and function of BTL was investigated in rat renal tubular plasma membrane vesicles. Transport of sulfobromophthalein (BSP) was enriched in basolateral domain of plasma membrane and followed the distribution pattern of Na(+)-K(+)-ATPase but not of gamma-glutamyltransferase. BSP uptake was inhibited by addition of monospecific antibodies raised against hepatic BTL. As in liver vesicles, BSP transport was electrogenic, being greatly accelerated by addition of valinomycin in presence of an inwardly directed K+ gradient. Apparent Km of BSP transport was 17 +/- 2 microM (n = 3 expts), one order of magnitude higher than that measured in liver; however, Vmax was similar to that described in liver vesicles (429 +/- 18 nmol BSP.mg protein-1.min-1, n = 3 expts). Competitive inhibition was observed with both unconjugated bilirubin (Ki, 2.9 +/- 0.2 microM) and rifamycin SV (Ki, 76 +/- 10 microM), known competitors for hepatic BTL-mediated transport of BSP. Immunoblotting studies with anti-BTL monospecific antibodies revealed presence of a single positive band only in basolateral-enriched membrane fraction; its apparent molecular mass was 37 kDa, virtually identical to that of hepatic protein. Immunohistochemistry confined presence of BTL to renal proximal tubules (RPT) We conclude that BTL is present in basolateral plasma membrane of RPT cells. Lower affinity of renal, compared with hepatic protein, for substrates might explain the marginal role of kidney in plasma clearance of bilirubin and cholephilic dyes.


Microbiology ◽  
1994 ◽  
Vol 140 (11) ◽  
pp. 3047-3051 ◽  
Author(s):  
A. Hernandez ◽  
D. T. Cooke ◽  
D. T. Clarkson

1999 ◽  
Vol 5 (S2) ◽  
pp. 998-999
Author(s):  
Seung K. Rhee ◽  
Arjan P. Quist ◽  
Hai Lin ◽  
Nils Almqvist ◽  
Ratneshx Lai

Hemichannels from two single cells can join upon contact between these cells to form gap junctions - an intercellular pathway for the direct exchange of ions and small metabolites. Using techniques of fluorescent dye-uptake assay, laser confocal fluorescence imaging and atomic force microscopy (AFM), we have examined the role of hemichannels, present in the non-junctional regions of single cell plasma membrane, in the modulation of cell volume.Antibodies against a gap junctional protein connexin43, were immunolocalized to nonjunctional plasma membrane regions of single BICR-MlRk k (breast tumor epithelial) cells, KOM-1 (bovine aortic endothelial) cells, and GM04260 (AD-free human) fibroblast cells. In the absence of extracellular calcium, cytoplasmic uptake of Lucifer yellow (LY) but not of dextran-conjugated LY was observed in single cells. Dye uptake was prevented by gap junctional inhibitors, ẞ-glycyrrhetinic acid (ẞGCA) and oleamide.


2021 ◽  
Vol 15 ◽  
pp. 117793222110258
Author(s):  
Ritesh Gorkhali ◽  
Prashanna Koirala ◽  
Sadikshya Rijal ◽  
Ashmita Mainali ◽  
Adesh Baral ◽  
...  

SARS-CoV-2 virus, the causative agent of COVID-19 pandemic, has a genomic organization consisting of 16 nonstructural proteins (nsps), 4 structural proteins, and 9 accessory proteins. Relative of SARS-CoV-2, SARS-CoV, has genomic organization, which is very similar. In this article, the function and structure of the proteins of SARS-CoV-2 and SARS-CoV are described in great detail. The nsps are expressed as a single or two polyproteins, which are then cleaved into individual proteins using two proteases of the virus, a chymotrypsin-like protease and a papain-like protease. The released proteins serve as centers of virus replication and transcription. Some of these nsps modulate the host’s translation and immune systems, while others help the virus evade the host immune system. Some of the nsps help form replication-transcription complex at double-membrane vesicles. Others, including one RNA-dependent RNA polymerase and one exonuclease, help in the polymerization of newly synthesized RNA of the virus and help minimize the mutation rate by proofreading. After synthesis of the viral RNA, it gets capped. The capping consists of adding GMP and a methylation mark, called cap 0 and additionally adding a methyl group to the terminal ribose called cap1. Capping is accomplished with the help of a helicase, which also helps remove a phosphate, two methyltransferases, and a scaffolding factor. Among the structural proteins, S protein forms the receptor of the virus, which latches on the angiotensin-converting enzyme 2 receptor of the host and N protein binds and protects the genomic RNA of the virus. The accessory proteins found in these viruses are small proteins with immune modulatory roles. Besides functions of these proteins, solved X-ray and cryogenic electron microscopy structures related to the function of the proteins along with comparisons to other coronavirus homologs have been described in the article. Finally, the rate of mutation of SARS-CoV-2 residues of the proteome during the 2020 pandemic has been described. Some proteins are mutated more often than other proteins, but the significance of these mutation rates is not fully understood.


Sign in / Sign up

Export Citation Format

Share Document