Characterization and function of membrane vesicles in Gram-positive bacteria

2021 ◽  
Vol 105 (5) ◽  
pp. 1795-1801
Author(s):  
Yina Cao ◽  
Huancai Lin
2021 ◽  
Author(s):  
Irina Afonina ◽  
Brenda Tien ◽  
Zeus Nair ◽  
Artur Matysik ◽  
Ling Ning Lam ◽  
...  

AbstractMembrane vesicles (MVs) contribute to various biological processes in bacteria, including virulence factor delivery, host immune evasion, and cross-species communication. MVs are frequently being discharged from the surface of both Gram-negative and Gram-positive bacteria during growth. In some Gram-positive bacteria, genes affecting MV biogenesis have been identified, but the mechanism of MV formation is unknown. In Enterococcus faecalis, a causative agent of life-threatening bacteraemia and endocarditis, neither mechanisms of MV formation nor their role in virulence has been examined. Since MVs of many bacterial species are implicated in host-pathogen interactions, biofilm formation, horizontal gene transfer, and virulence factor secretion in other species, we sought to identify, describe, and functionally characterize MVs from E. faecalis. Here we show that E. faecalis releases MVs that possess unique lipid and protein profiles, distinct from the intact cell membrane, and are enriched in lipoproteins. MVs of E. faecalis are specifically enriched in unsaturated lipids that might provide membrane flexibility to enable MV formation, providing the first insights into the mechanism of MV formation in this Gram-positive organism.


2020 ◽  
Vol 88 (12) ◽  
Author(s):  
Paul Briaud ◽  
Ronan K. Carroll

ABSTRACT Extracellular vesicles (EVs) are membrane-derived lipid bilayers secreted by bacteria and eukaryotic cells. Bacterial membrane vesicles were discovered over 60 years ago and have been extensively studied in Gram-negative bacteria. During their production, EVs are loaded with proteins, nucleic acids, and various compounds that are subsequently released into the environment. Depending on the packaged cargo, EVs have a broad spectrum of action and are involved in pathogenesis, antibiotic resistance, nutrient uptake, and nucleic acid transfer. Due to differences in cell wall structure, EVs in Gram-positive bacteria have been disregarded for decades, and our understanding of their biogenesis and host cell interaction is incomplete. Recently, studies on bacteria such as Staphylococcus aureus, Streptococcus spp., Bacillus subtilis, and Mycobacterium spp. have demonstrated EV production in Gram-positive bacteria and shown the great importance EVs have in Gram-positive bacterial physiology and disease progression. Here, we review the latest findings on the biogenesis and functions of EVs from Gram-positive bacteria and identify key areas for future research.


1993 ◽  
Vol 12 (1-3) ◽  
pp. 149-163 ◽  
Author(s):  
Wolfgang Hengstenberg ◽  
Detlef Kohlbrecher ◽  
Ellen Witt ◽  
Regina Kruse ◽  
Ingo Christiansen ◽  
...  

2014 ◽  
Vol 68 (1) ◽  
pp. 81-100 ◽  
Author(s):  
Matthew G. Percy ◽  
Angelika Gründling

1989 ◽  
Vol 63 (1-2) ◽  
pp. 35-42 ◽  
Author(s):  
Wolfgang Hengstenberg ◽  
Bernd Reiche ◽  
Reinhard Eisermann ◽  
Roland Fischer ◽  
Ursula Keßler ◽  
...  

PROTEOMICS ◽  
2009 ◽  
Vol 9 (24) ◽  
pp. 5425-5436 ◽  
Author(s):  
Eun-Young Lee ◽  
Do-Young Choi ◽  
Dae-Kyum Kim ◽  
Jung-Wook Kim ◽  
Jung Ok Park ◽  
...  

2015 ◽  
Vol 198 (5) ◽  
pp. 746-754 ◽  
Author(s):  
Melissa E. Reardon-Robinson ◽  
Hung Ton-That

Disulfide bonds are important for the stability and function of many secreted proteins. In Gram-negative bacteria, these linkages are catalyzed by thiol-disulfide oxidoreductases (Dsb) in the periplasm. Protein oxidation has been well studied in these organisms, but it has not fully been explored in Gram-positive bacteria, which lack traditional periplasmic compartments. Recent bioinformatics analyses have suggested that the high-GC-content bacteria (i.e., actinobacteria) rely on disulfide-bond-forming pathways. In support of this, Dsb-like proteins have been identified inMycobacterium tuberculosis, but their functions are not known.Actinomyces orisandCorynebacterium diphtheriaehave recently emerged as models to study disulfide bond formation in actinobacteria. In both organisms, disulfide bonds are catalyzed by the membrane-bound oxidoreductase MdbA. Remarkably, unlike known Dsb proteins, MdbA is important for pathogenesis and growth, which makes it a potential target for new antibacterial drugs. This review will discuss disulfide-bond-forming pathways in bacteria, with a special focus on Gram-positive bacteria.


2002 ◽  
Vol 48 (9) ◽  
pp. 810-820 ◽  
Author(s):  
Kelly L MacDonald ◽  
Terry J Beveridge

Previous studies have shown that gentamicin-induced membrane vesicles (g-MVs) from Pseudomonas aeruginosa PAO1 possess both the antibiotic (gentamicin) and a potent peptidoglycan hydrolase (PGase; autolysin) that is effective in killing gram-negative pathogens. This present study evaluated the therapeutic potential of g-MVs against four gram-positive bacteria. Bactericidal assays and electron microscopy of thin sections revealed that Bacillus subtilis 168 and Staphylococcus aureus D2C were susceptible to killing mediated by g-MVs, Listeria monocytogenes ATCC 19113 was slightly susceptible, whereas Enterococcus hirae ATCC 9790 was unaffected. g-MVs were generally more effective against the bacteria than was soluble gentamicin, suggesting they could have more killing power than natural membrane vesicles containing no antibiotic. Electron microscopy and hydrophobic interaction chromatography showed that more membrane vesicles (MVs) initially attached to B. subtilis (hydrophilic) than to predominantly hydrophobic E. hirae, L. monocytogenes, and S. aureus. Zymograms containing murein sacculi as an enzyme substrate illustrated that all organisms except E. hirae were sensitive to the 26-kDa autolysin to varying degrees. Peptidoglycan O-acetylation did not influence susceptibility to MV-mediated lysis. Though not universally effective, the g-MV delivery system remains a promising therapeutic alternative for specific gram-positive infections.Key words: gram-negative membrane vesicles, gentamicin, autolysin.


2017 ◽  
Vol 85 (5) ◽  
Author(s):  
Nozomu Obana ◽  
Ryoma Nakao ◽  
Kyoko Nagayama ◽  
Kouji Nakamura ◽  
Hidenobu Senpuku ◽  
...  

ABSTRACT Recently, many Gram-positive bacteria as well as Gram-negative bacteria have been reported to produce membrane vesicles (MVs), but little is known regarding the regulators involved in MV formation. We found that a Gram-positive anaerobic pathogen, Clostridium perfringens, produces MVs predominantly containing membrane proteins and cell wall components. These MVs stimulated proinflammatory cytokine production in mouse macrophage-like cells. We suggested that MVs induced interleukin-6 production through the Toll-like receptor 2 (TLR2) signaling pathway. Thus, the MV could have a role in the bacterium-host interaction and bacterial infection pathogenesis. Moreover, we found that the sporulation master regulator gene spo0A was required for vesiculogenesis. A conserved, phosphorylated aspartate residue of Spo0A was indispensable for MV production, suggesting that the phosphorylation of Spo0A triggers MV production. Multiple orphan sensor kinases necessary for sporulation were also required to maximize MV production. These findings imply that C. perfringens actively produces immunoactive MVs in response to the environment changing, as recognized by membrane-spanning sensor kinases and by modulating the phosphorylation level of Spo0A.


Sign in / Sign up

Export Citation Format

Share Document