The Fibrillar Flight Muscles of Giant Water-Bugs: An Electron-Microscope Study

1967 ◽  
Vol 2 (3) ◽  
pp. 435-444
Author(s):  
DOREEN E. ASHHURST

The fibrillar flight muscles of several species of tropical water-bugs of the family Belostomatidae have been examined in the electron microscope. The myofibrils are very similar to those of the other fibrillar flight muscles which have been studied. The membrane systems, however, display features which appear to be peculiar to this family. The sarcoplasmic reticulum can be divided into three parts: a series of interconnecting vesicles surrounding the Z-lines, randomly scattered small vesicles around the myofibrils, and flattened cisternae which lie along the transverse tubular system, and form the dyads. These three components of the sarcoplasmic reticulum do not appear to be interconnected. The cisternae of the dyads contain an electrondense substance. The narrow tubules of the transverse tubular system or T-system penetrate deep into the fibre from the cell membrane. They follow a course roughly perpendicular to the myofibrils at the level of the M-lines. The dyads are scattered along their length, and may not be near a myofibril. Another system of very large vesicles is found in the muscle fibres, interspersed among the mitochondria. These vesicles usually appear to be empty; their nature and function are not at present known. Numerous mitochondria are present among the myofibrils. The peculiarities of the water-bug fibrillar flight muscle are discussed in relation to the flight muscles of other insects and the physiological properties of fibrillar flight muscle.

1972 ◽  
Vol 10 (3) ◽  
pp. 667-682 ◽  
Author(s):  
D. REES ◽  
P. N. R. USHERWOOD

The structure of normal and denervated muscle fibres in the metathoracic retractor unguis muscle of the locust (Schistocerca gregaria) has been examined. Section of the 2 motor neurons which innervate this muscle results initially in muscle hypertrophy but this is followed about 4 days post neurotomy by progressive atrophy. Atrophy of the retractor unguis muscle is characterized by a decrease in muscle volume and degeneration of muscle organelles, e.g. mitochondria, sarcoplasmic reticulum, transverse tubular system, protein filaments, etc. During its later stages the degeneration of the denervated muscle is possibly assisted by the phagocytic action of haemocytes which invade the muscle.


1990 ◽  
Vol 240 (1297) ◽  
pp. 197-210 ◽  

Immunolabelling with a 5 nm gold probe was used to localize dystrophin at the ultrastructural level in human muscle. The primary antibody was monoclonal, raised against a segment (amino acids 1181-1388) from the rod domain of dystrophin. The antibody (Dy4/6D3) is specific for dystrophin and shows no immunoreactivity with any protein from mdx mouse muscle or from patients with a gene deletion spanning part of the molecule recognized by the antibody (Nicholson et al . 1989 a ; England et al . 1990). Using this antibody, labelling was almost entirely confined to a narrow 75 nm rim at the periphery of the muscle fibres. Histograms of the distance from the gold probe to the cytoplasmic face of the plasma membrane and of the distance between gold probes (nearest neighbour in a plane parallel with the plasma membrane) displayed modes at approximately 15 nm and 120 nm, respectively. The distribution of the probe was the same in longitudinal and transverse sections of the muscle. These observations suggest that the rod portion of the dystrophin mole­cule is normally arranged close to the cytoplasmic face of the plasma membrane and that the molecules form an interconnecting network. Labelling was not associated with the transverse tubular system.


1966 ◽  
Vol 29 (3) ◽  
pp. 449-459 ◽  
Author(s):  
David S. Smith

The organization of intersegmental muscle fibers associated with the dorsal abdominal sclerites of the cockroach is described. These fibers correspond closely, in the disposition and derivation of the membranes of the transverse tubular system and sarcoplasmic reticulum cisternae, with insect synchronous flight muscle fibers, but differ markedly from these in their fibrillar architecture and mitochondrial content. The mitochondria are small and generally aligned alongside the prominent I bands of the sarcomere, and, in the best-oriented profiles of the A bands, thick filaments are associated with orbitals of twelve thin filaments, a configuration that has also been observed in striated fibers of insect visceral muscle. These structural features of insect muscles are compared and discussed in terms of possible variations in the control of contraction and relaxation, and in the nature of their mechanical role.


1965 ◽  
Vol 27 (2) ◽  
pp. 379-393 ◽  
Author(s):  
David S. Smith

The organization of the indirect flight muscle of an aphid (Hemiptera-Homoptera) is described. The fibers of this muscle contain an extensive though irregularly disposed complement of T system tubules, derived as open invaginations from the cell surface and from the plasma membrane sheaths accompanying the tracheoles within the fiber. The sarcoplasmic reticulum is reduced to small vesicles applied to the T system surfaces, the intermembrane gap being traversed by blocks of electron-opaque material resembling that of septate desmosomes. The form and distribution of the T system and sarcoplasmic reticulum membranes in flight muscles of representatives of the major insect orders is described, and the extreme reduction of the reticulum cisternae in all asynchronous fibers (to which group the aphid flight muscle probably belongs), and the high degree of their development in synchronous fibers is documented and discussed in terms of the contraction physiology of these muscle cells.


1967 ◽  
Vol 24 (12) ◽  
pp. 2549-2553 ◽  
Author(s):  
C. M. Bishop ◽  
P. H. Odense

The structure of the white skeletal muscle of the cod (Gadus morhua) is described. The peripheral fibrils are ribbon-like and rectangular in cross section with the long axis normal to the sarcolemma. The inner fibrils are mainly polygonal in cross section. Most of the mitochondria and nuclei are peripheral to the fibrils and next to the sarcolemma. The arrangement of the contractile proteins is typical for striated muscle, and the sarcoplasmic reticulum and transverse tubular system are similar to those in other white skeletal fish muscle. A distinct N-band is apparent with indications of branching and reorientation of the actin filaments. Mitochondria are often closely associated with the Z line.


1968 ◽  
Vol 36 (3) ◽  
pp. 433-442 ◽  
Author(s):  
Martin Hagopian ◽  
David Spiro

The fine structure of the tergo-coxal muscle of the cockroach, Leucophaea maderae, has been studied with the electron microscope. This muscle differs from some other types of insect flight muscles inasmuch as the ratio of thin to thick filaments is 4 instead of the characteristic 3. The cockroach flight muscle also differs from the cockroach femoral muscle in thin to thick filament ratios and diameters and in lengths of thick filaments. A comparison of these latter three parameters in a number of vertebrate and invertebrate muscles suggests in general that the diameters and lengths of the thick filaments and thin to thick filament ratios are related.


Sign in / Sign up

Export Citation Format

Share Document