scholarly journals Rapid calcium release from the isolated sarcoplasmic reticulum is triggered via the attached transverse tubular system.

1984 ◽  
Vol 259 (21) ◽  
pp. 13151-13158
Author(s):  
N Ikemoto ◽  
B Antoniu ◽  
D H Kim
1967 ◽  
Vol 24 (12) ◽  
pp. 2549-2553 ◽  
Author(s):  
C. M. Bishop ◽  
P. H. Odense

The structure of the white skeletal muscle of the cod (Gadus morhua) is described. The peripheral fibrils are ribbon-like and rectangular in cross section with the long axis normal to the sarcolemma. The inner fibrils are mainly polygonal in cross section. Most of the mitochondria and nuclei are peripheral to the fibrils and next to the sarcolemma. The arrangement of the contractile proteins is typical for striated muscle, and the sarcoplasmic reticulum and transverse tubular system are similar to those in other white skeletal fish muscle. A distinct N-band is apparent with indications of branching and reorientation of the actin filaments. Mitochondria are often closely associated with the Z line.


1997 ◽  
Vol 137 (4) ◽  
pp. 859-870 ◽  
Author(s):  
Feliciano Protasi ◽  
Clara Franzini-Armstrong ◽  
Bernhard E. Flucher

Rapid release of calcium from the sarcoplasmic reticulum (SR) of skeletal muscle fibers during excitation–contraction (e–c) coupling is initiated by the interaction of surface membrane calcium channels (dihydropyridine receptors; DHPRs) with the calcium release channels of the SR (ryanodine receptors; RyRs, or feet). We studied the early differentiation of calcium release units, which mediate this interaction, in BC3H1 cells. Immunofluorescence labelings of differentiating myocytes with antibodies against α1 and α2 subunits of DHPRs, RyRs, and triadin show that the skeletal isoforms of all four proteins are abundantly expressed upon differentiation, they appear concomitantly, and they are colocalized. The transverse tubular system is poorly organized, and thus clusters of e–c coupling proteins are predominantly located at the cell periphery. Freeze fracture analysis of the surface membrane reveals tetrads of large intramembrane particles, arranged in orderly arrays. These appear concomitantly with arrays of feet (RyRs) and with the appearance of DHPR/RyS clusters, confirming that the four components of the tetrads correspond to skeletal muscle DHPRs. The arrangement of tetrads and feet in developing junctions indicates that incorporation of DHPRs in junctional domains of the surface membrane proceeds gradually and is highly coordinated with the formation of RyR arrays. Within the arrays, tetrads are positioned at a spacing of twice the distance between the feet. The incorporation of individual DHPRs into tetrads occurs exclusively at positions corresponding to alternate feet, suggesting that the assembly of RyR arrays not only guides the assembly of tetrads but also determines their characteristic spacing in the junction.


1967 ◽  
Vol 2 (3) ◽  
pp. 435-444
Author(s):  
DOREEN E. ASHHURST

The fibrillar flight muscles of several species of tropical water-bugs of the family Belostomatidae have been examined in the electron microscope. The myofibrils are very similar to those of the other fibrillar flight muscles which have been studied. The membrane systems, however, display features which appear to be peculiar to this family. The sarcoplasmic reticulum can be divided into three parts: a series of interconnecting vesicles surrounding the Z-lines, randomly scattered small vesicles around the myofibrils, and flattened cisternae which lie along the transverse tubular system, and form the dyads. These three components of the sarcoplasmic reticulum do not appear to be interconnected. The cisternae of the dyads contain an electrondense substance. The narrow tubules of the transverse tubular system or T-system penetrate deep into the fibre from the cell membrane. They follow a course roughly perpendicular to the myofibrils at the level of the M-lines. The dyads are scattered along their length, and may not be near a myofibril. Another system of very large vesicles is found in the muscle fibres, interspersed among the mitochondria. These vesicles usually appear to be empty; their nature and function are not at present known. Numerous mitochondria are present among the myofibrils. The peculiarities of the water-bug fibrillar flight muscle are discussed in relation to the flight muscles of other insects and the physiological properties of fibrillar flight muscle.


1968 ◽  
Vol 38 (1) ◽  
pp. 115-129 ◽  
Author(s):  
Philip W. Brandt ◽  
John P. Reuben ◽  
Harry Grundfest

Living muscle fibers of crayfish become dark during efflux of Cl-. This change in appearance is correlated with occurrence of vacuolation in the fixed fibers. The vacuoles begin at and are mainly confined to the terminals of the transverse tubular system (TTS) which are in diadic contact with the sarcoplasmic reticulum (SR). In electron micrographs swellings more than 1 µ in diameter may be seen connected to the sarcolemma or sarcolemmal invaginations by relatively unswollen tubules about 300–500 A wide. Darkening of the living fibers can be reversed by causing an influx of Cl-. Vacuoles are then absent in the fixed preparations. These findings accord with the conclusion that the membrane of the TTS is anion permselective. Localization of the selectivity to the membrane of the terminals of the TTS strengthens the hypothesis that a channeling of current flow is responsible for initiation of excitation-contraction coupling. During the swelling, and upon its reversal, the area of the membrane of the terminals must change reversibly by about two to four orders of magnitude. The absence of changes in the dimensions of the unit membrane indicates that the expansion of the membrane and its subsequent shrinkage involve reversible incorporation of cytoplasmic material into the membrane phase.


1971 ◽  
Vol 51 (2) ◽  
pp. 369-383 ◽  
Author(s):  
A. R. Luff ◽  
H. L. Atwood

The sarcoplasmic reticulum (SR) and transverse tubular system (TTS) of a fast-twitch muscle (extensor digitorum longus-EDL) and a slow-twitch muscle (soleus-SOL) of the mouse were examined during postnatal development. Muscles of animals newborn to 60 days old were fixed in glutaraldehyde and osmium tetroxide and examined with an electron microscope. At birth the few T tubules were often oriented longitudinally, but at the age of 10 days most of them had a transverse orientation. In the EDL, the estimated volume of the TTS increased from 0.08% at birth to 0.4% in the adult; corresponding values for the SOL were 0.04% at birth and 0.22% in the adult. A similar relative change was observed in surface area of the TTS during development. Calculated on the basis of a 30 µm diameter fiber, the surface area of the TTS in the EDL increased from 0.60 cm2 TTS/cm2 fiber surface in the newborn to 3.1 cm2/cm2 in the adult, compared with 0.15 cm2/cm2 at birth to 1.80 cm2/cm2 in the adult for the SOL. The SR in the newborn muscles occurred as a loose network of tubules that developed rapidly within the subsequent 20 days, especially at the I band level. The volume of the SR increased in the EDL from 1.1% of fiber volume at birth to 5.5% in the adult. In the SOL the change was from 1.7% to 2.9%. The SOL approached the adult values more rapidly than the EDL, although the EDL had more SR and T tubules. Fibers of both EDL and SOL muscles showed variation in Z line thickness, mitochondrial content, and diameter, but over-all differences between the two muscles in amount of SR and TTS were significant. It is considered that the differing amounts of SR and TTS are closely related to the differing speeds of contraction that have been demonstrated for these two muscles.


1967 ◽  
Vol 32 (3) ◽  
pp. 535-545 ◽  
Author(s):  
Martin Hagopian ◽  
David Spiro

The fine structure of the sarcoplasmic reticulum and the transverse tubular system of the femoral muscle of the cockroach, Leucophaea maderae, was studied after prefixation in glutaraldehyde, postfixation in osmium tetroxide, and embedding in Epon. The sarcoplasmic reticulum in this muscle reveals features not previously reported. The sarcoplasmic reticulum is abundant, consisting mainly of a fenestrated envelope which surrounds each myofibril at all levels in the sarcomere. This sarcoplasmic reticulum envelope is continuous transversally as well as longitudinally along the myofibrils. Dyadic junctions are formed by a single T system element which contacts the unfenestrated sarcoplasmic reticulum of adjacent myofibrils in an alternating manner at the ends of the A band. At the dyads, regularly spaced thickenings of the sarcoplasmic reticulum membranes bordering the dyadic spaces are noted. These thickenings, however, do not contact the T tubule membrane. Typical dyadic contacts also are seen between the cell surface membrane and sarcoplasmic reticulum. Z line-like material is seen in contact with the membranes of the cell surface and longitudinal branches of the T systems.


Sign in / Sign up

Export Citation Format

Share Document