scholarly journals MITOL-mediated DRP1 ubiquitylation and degradation promotes mitochondrial hyperfusion in CMT2A-linked MFN2 mutant

2021 ◽  
Author(s):  
Rajdeep Das ◽  
Izaz Monir Kamal ◽  
Subhrangshu Das ◽  
Saikat Chakrabarti ◽  
Oishee Chakrabarti

Mutations in Mitofusin2 (MFN2), associated with the pathology of the debilitating neuropathy, Charcot-Marie-Tooth type 2A (CMT2A) are known to alter mitochondrial morphology. One such abundant MFN2 mutant, R364W results in the generation of elongated, interconnected mitochondria. However, the mechanism leading to this mitochondrial aberration remains poorly understood. Here we show that mitochondrial hyperfusion in the presence of R364W-MFN2 is due to increased degradation of DRP1. The Ubiquitin E3 ligase MITOL is known to ubiquitylate both MFN2 and DRP1. Interaction with and its subsequent ubiquitylation by MITOL is stronger in presence of WT-MFN2 than R364W-MFN2. This differential interaction of MITOL with MFN2 in the presence of R364W-MFN2 renders the ligase more available for DRP1 ubiquitylation. Multimonoubiquitylation and proteasomal degradation of DRP1 in R364W-MFN2 cells in the presence of MITOL eventually leads to mitochondrial hyperfusion. Here we provide a mechanistic insight into mitochondrial hyperfusion, while also reporting that MFN2 can indirectly modulate DRP1 – an effect not shown before.

2018 ◽  
Vol 92 (15) ◽  
Author(s):  
Myoung Kyu Lee ◽  
Ye Ji Kim ◽  
Young-Eui Kim ◽  
Tae-Hee Han ◽  
Jens Milbradt ◽  
...  

ABSTRACT Interferon-stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that can be conjugated to proteins via an enzymatic cascade involving the E1, E2, and E3 enzymes. ISG15 expression and protein ISGylation modulate viral infection; however, the viral mechanisms regulating the function of ISG15 and ISGylation are not well understood. We recently showed that ISGylation suppresses the growth of human cytomegalovirus (HCMV) at multiple steps of the virus life cycle and that the virus-encoded pUL26 protein inhibits protein ISGylation. In this study, we demonstrate that the HCMV UL50-encoded transmembrane protein, a component of the nuclear egress complex, also inhibits ISGylation. pUL50 interacted with UBE1L, an E1-activating enzyme for ISGylation, and (to a lesser extent) with ISG15, as did pUL26. However, unlike pUL26, pUL50 caused proteasomal degradation of UBE1L. The UBE1L level induced in human fibroblast cells by interferon beta treatment or virus infection was reduced by pUL50 expression. This activity of pUL50 involved the transmembrane (TM) domain within its C-terminal region, although pUL50 could interact with UBE1L in a manner independent of the TM domain. Consistently, colocalization of pUL50 with UBE1L was observed in cells treated with a proteasome inhibitor. Furthermore, we found that RNF170, an endoplasmic reticulum (ER)-associated ubiquitin E3 ligase, interacted with pUL50 and promoted pUL50-mediated UBE1L degradation via ubiquitination. Our results demonstrate a novel role for the pUL50 transmembrane protein of HCMV in the regulation of protein ISGylation. IMPORTANCE Proteins can be conjugated covalently by ubiquitin or ubiquitin-like proteins, such as SUMO and ISG15. ISG15 is highly induced in viral infection, and ISG15 conjugation, termed ISGylation, plays important regulatory roles in viral growth. Although ISGylation has been shown to negatively affect many viruses, including human cytomegalovirus (HCMV), viral countermeasures that might modulate ISGylation are not well understood. In the present study, we show that the transmembrane protein encoded by HCMV UL50 inhibits ISGylation by causing proteasomal degradation of UBE1L, an E1-activating enzyme for ISGylation. This pUL50 activity requires membrane targeting. In support of this finding, RNF170, an ER-associated ubiquitin E3 ligase, interacts with pUL50 and promotes UL50-mediated UBE1L ubiquitination and degradation. Our results provide the first evidence, to our knowledge, that viruses can regulate ISGylation by directly targeting the ISGylation E1 enzyme.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 253-253 ◽  
Author(s):  
Louise Natalie Winteringham ◽  
Raelene Endersby ◽  
Jennifer Beaumont ◽  
Jean-Philippe Lalonde ◽  
Merlin Crossley ◽  
...  

Abstract Abstract 253 Hemopoietic lineage commitment is controlled, in part, by transcription factors that regulate specific genes required for the formation of mature blood cells. Differentiation along particular hemopoietic lineages is dependant not only on the presence of particular transcription factors, but also on appropriate concentrations - altering transcription factor levels can force cells into different hemopoietic pathways. Transcription factors undergo numerous post-translational modifications and are controlled spatially via sub-cellular localisation. De-regulation of transcription factors can result in leukemias, or other blood disorders. GATA-1 is an example of a key lineage-determining gene, essential for erythropoiesis. Increasing GATA-1 levels promotes maturation along the erythroid pathway, whereas reducing GATA-1 concentrations favours myelopoiesis. GATA-1 regulation occurs at multiple levels including transcription, translation and post-translational modifications such as phosphorylation, acetylation, ubiquitination and sumoylation. Although GATA-1 ubiquitination modifies the protein for proteasomal degradation, the effect of adding small ubiquitin-like modier (Sumo) to GATA-1 is unclear. Several examples of hemopoietic differentiation plasticity have been observed. We reported a lineage switch by erythroleukemic J2E cells which spontaneously developed a monoblastoid phenotype. Two genes (Hls5 and Hls7/Mlf1) were isolated from this lineage switch with potential lineage-determining features. Hls5 is a member of the RBCC (Ring finger, B-box, Coiled-coil) family of proteins, which includes PML. Ectopic expression of Hls5 impedes erythroid differentiation by reducing GATA-1 levels, and suppressing hemoglobin synthesis. Significantly, Hls5 relocates from the cytoplasm to associate with GATA-1 in the nucleus, where it interferes with DNA binding and transactivation of GATA-1. Several members of the RBCC family are ubiquitin E3 ligases, catalysing the final step in the ubiquitination process - these molecules play a vital role in regulating the levels of target proteins. Here we show that Hls5 is a bona fide ubiquitin E3 ligase, in partnership with several ubiquitin E2 enzymes. The Ring finger is critical for Hls5 ligase activity as mutation of key residues within the Ring finger ablates catalytic activity. Interestingly, a yeast 2 hybrid screen for Hls5 interactors identified Ubc9 and Pias1, which act as E2 and E3 enzymes in the sumoylation cascade. Co-immunoprecipitation, BRET and co-localization experiments confirmed the Hls5 association with Ubc9 and Pias1. Moreover, Hls5 binds Sumo-1 (but not Sumo-2 or 3), and co-localizes with Sumo-1 in discrete nuclear bodies. Thus, Hls5 interacts with several components of the intracellular sumoylation machinery. Hls5 can also reduce sumoylated proteins globally, indicating it may target these modified proteins for degradation. Recently, a new family of ubiquitin E3 ligases has been described which specifically mark sumoylated proteins for degradation. These Sumo-targeted ubiquitin ligases (STUbL) are found primarily in yeast, and only one mammalian STUbL has been identified. We postulated that Hls5 may be a STUbL, capable of regulating sumoylated GATA-1. Our data demonstrate that while Hls5 is able to bind GATA-1 via the B-box and Coiled-coil domains, it preferentially associates with sumoylated GATA-1 through a canonical Sumo interacting motif (SIM). This results in increased GATA-1 ubiquitination and, as a consequence, levels of sumoylated GATA-1 are reduced substantially. Since mutation of the lysine necessary for Sumo attachment does not affect GATA-1 transactivation, sumoylation may act as a prelude to ubiquitination and protein turn-over. We propose, therefore, that GATA-1 mediates transcription of target genes, and is subsequently sumoylated by Pias1 and Ubc9 – addition of Sumo moieties to GATA-1 enhance binding to Hls5, which in turn impedes GATA-1 DNA binding, and promotes ubiquitination for proteasomal degradation. This model is consistent with decreased levels of GATA-1 in erythroid cells ectopically expressing Hls5, and with the original isolation of Hls5 as a potential lineage-determining gene involved with the erythroid to monoblastoid lineage switch. Thus, Hls5 is a novel STUbL which plays a role in hemopoietic lineage commitment by modulating GATA-1 activity and content. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 295 (43) ◽  
pp. 14630-14639
Author(s):  
Sachiko Toma-Fukai ◽  
Ryota Hibi ◽  
Takao Naganuma ◽  
Mashito Sakai ◽  
Shinya Saijo ◽  
...  

General control nonderepressible 5 (GCN5, also known as Kat2a) and p300/CBP-associated factor (PCAF, also known as Kat2b) are two homologous acetyltransferases. Both proteins share similar domain architecture consisting of a PCAF N-terminal (PCAF_N) domain, acetyltransferase domain, and a bromodomain. PCAF also acts as a ubiquitin E3 ligase whose activity is attributable to the PCAF_N domain, but its structural aspects are largely unknown. Here, we demonstrated that GCN5 exhibited ubiquitination activity in a similar manner to PCAF and its activity was supported by the ubiquitin-conjugating enzyme UbcH5. Moreover, we determined the crystal structure of the PCAF_N domain at 1.8 Å resolution and found that PCAF_N domain folds into a helical structure with a characteristic binuclear zinc region, which was not predicted from sequence analyses. The zinc region is distinct from known E3 ligase structures, suggesting this region may form a new class of E3 ligase. Our biochemical and structural study provides new insight into not only the functional significance of GCN5 but also into ubiquitin biology.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009693
Author(s):  
Shuo Gao ◽  
Zixuan Wang ◽  
Luxiang Wang ◽  
Haihong Wang ◽  
Hao Yuan ◽  
...  

The ubiquitin-proteasome system plays important roles in various biological processes as it degrades the majority of cellular proteins. Adequate proteasomal degradation of crucial transcription regulators ensures the proper development of neutrophils. The ubiquitin E3 ligase of Growth factor independent 1 (GFI1), a key transcription repressor governing terminal granulopoiesis, remains obscure. Here we report that the deficiency of the ring finger protein Interferon regulatory factor 2 binding protein 2a (Irf2bp2a) leads to an impairment of neutrophils differentiation in zebrafish. Mechanistically, Irf2bp2a functions as a ubiquitin E3 ligase targeting Gfi1aa for proteasomal degradation. Moreover, irf2bp2a gene is repressed by Gfi1aa, thus forming a negative feedback loop between Irf2bp2a and Gfi1aa during neutrophils maturation. Different levels of GFI1 may turn it into a tumor suppressor or an oncogene in malignant myelopoiesis. Therefore, discovery of certain drug targets GFI1 for proteasomal degradation by IRF2BP2 might be an effective anti-cancer strategy.


2012 ◽  
Vol 420 (2) ◽  
pp. 404-410 ◽  
Author(s):  
Jee Won Lee ◽  
Hye Seon Kang ◽  
Jae Youn Lee ◽  
Eun Jung Lee ◽  
Hyewhon Rhim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document