scholarly journals Phosphorylation of AMPA receptor subunit GluA1 regulates clathrin-mediated receptor internalization

2021 ◽  
Author(s):  
Matheus F. Sathler ◽  
Latika Khatri ◽  
Jessica P. Roberts ◽  
Isabella G. Schmidt ◽  
Anastasiya Zaytseva ◽  
...  

Synaptic strength is altered during synaptic plasticity by controlling the number of AMPA receptors (AMPARs) at excitatory synapses. During long-term potentiation and synaptic up-scaling, AMPARs are accumulated at synapses to increase synaptic strength. Neuronal activity leads to phosphorylation of AMPAR subunit GluA1 and subsequent elevation of GluA1 surface expression, either by an increase in receptor forward trafficking to the synaptic membrane or a decrease in receptor internalization. However, the molecular pathways underlying GluA1 phosphorylation-induced elevation of surface AMPAR expression are not completely understood. Here, we employ fluorescence recovery after photobleaching (FRAP) to reveal that phosphorylation of GluA1 Serine 845 (S845) predominantly plays a role in receptor internalization than forward trafficking during synaptic plasticity. Notably, internalization of AMPARs depends upon the clathrin adaptor, AP2, which recruits cargo proteins into endocytic clathrin coated pits. In fact, we further reveal that an increase in GluA1 S845 phosphorylation by two distinct forms of synaptic plasticity diminishes the binding of the AP2 adaptor, reducing internalization, and resulting in elevation of GluA1 surface expression. We thus demonstrate a mechanism of GluA1 phosphorylation-regulated clathrin-mediated internalization of AMPARs.

2020 ◽  
Author(s):  
Matheus F. Sathler ◽  
Latika Khatri ◽  
Jessica P. Roberts ◽  
Regina C.C. Kubrusly ◽  
Edward B. Ziff ◽  
...  

AbstractSynaptic strength is altered during synaptic plasticity by controlling the number of AMPA receptors (AMPARs) at excitatory synapses. In particular, during long-term potentiation and synaptic up-scaling, AMPARs are accumulated at synapses to increase synaptic strength. Neuronal activity leads to activity-dependent phosphorylation of AMPAR subunit GluA1, and subsequent increases in GluA1 surface expression, which can be achieved by either an increase in exocytosis or a decrease in endocytosis of the receptors. However, the molecular pathways underlying GluA1 phosphorylation-induced elevation of surface AMPAR expression are not completely understood. Here, we first employ fluorescence recovery after photobleaching (FRAP) to reveal that phosphorylation of GluA1 Serine 845 (S845) plays a more important role in receptor endocytosis than exocytosis during synaptic plasticity. Notably, endocytosis of AMPARs depends upon the clathrin adaptor, AP2, which recruits cargo proteins into endocytic clathrin coated pits. Importantly, the KRMK (Lysine-Arginine-Methionine-Lysine) motif in the carboxyl-terminus of GluA1 is suggested to be an AP2 binding site, but the exact function has not been defined. Moreover, the GluA1 KRMK motif is closely located to one of GluA1 phosphorylation sites, serine 845 (S845), and GluA1 S845 dephosphorylation is suggested to enhance endocytosis during long-term depression. In fact, we show that an increase in GluA1 S845 phosphorylation by two distinct forms of synaptic plasticity, long-term potentiation and synaptic up-scaling, diminishes the binding of the AP2 adaptor. This reduces endocytosis, resulting in elevation of GluA1 surface expression. We thus demonstrate a mechanism of GluA1 phosphorylation-regulated clathrin-mediated endocytosis of AMPARs.


Science ◽  
2018 ◽  
Vol 363 (6422) ◽  
pp. eaav1483 ◽  
Author(s):  
Ankit Awasthi ◽  
Binu Ramachandran ◽  
Saheeb Ahmed ◽  
Eva Benito ◽  
Yo Shinoda ◽  
...  

Forgetting is important. Without it, the relative importance of acquired memories in a changing environment is lost. We discovered that synaptotagmin-3 (Syt3) localizes to postsynaptic endocytic zones and removes AMPA receptors from synaptic plasma membranes in response to stimulation. AMPA receptor internalization, long-term depression (LTD), and decay of long-term potentiation (LTP) of synaptic strength required calcium-sensing by Syt3 and were abolished through Syt3 knockout. In spatial memory tasks, mice in which Syt3 was knocked out learned normally but exhibited a lack of forgetting. Disrupting Syt3:GluA2 binding in a wild-type background mimicked the lack of LTP decay and lack of forgetting, and these effects were occluded in the Syt3 knockout background. Our findings provide evidence for a molecular mechanism in which Syt3 internalizes AMPA receptors to depress synaptic strength and promote forgetting.


2020 ◽  
pp. 69-82
Author(s):  
Enikö A. Kramár

Estrogens are rapid and potent facilitators of synaptic plasticity in the adult brain; however, the steps that link estrogens to factors that regulate synaptic strength remain unclear. The present chapter will first review the acute effects of 17β‎-estradiol on synaptic transmission and long-term potentiation (LTP). It will then describe a synaptic model used to study the substrates of LTP and provide evidence for the ability of estradiol to rapidly engage a selective actin signaling cascade associated with the consolidation of LTP. Finally, it will be shown that chronic reductions in estradiol levels disrupt LTP and actin dynamics but can be reversed by acute infusions of the hormone. It is concluded here that estradiol can promote learning-related plasticity by modifying the synaptic cytoskeleton.


2003 ◽  
Vol 358 (1432) ◽  
pp. 715-720 ◽  
Author(s):  
Fabrice Duprat ◽  
Michael Daw ◽  
Wonil Lim ◽  
Graham Collingridge ◽  
John Isaac

AMPA-type glutamate receptors mediate most fast excitatory synaptic transmissions in the mammalian brain. They are critically involved in the expression of long-term potentiation and long-term depression, forms of synaptic plasticity that are thought to underlie learning and memory. A number of synaptic proteins have been identified that interact with the intracellular C-termini of AMPA receptor subunits. Here, we review recent studies and present new experimental data on the roles of these interacting proteins in regulating the AMPA receptor function during basal synaptic transmission and plasticity.


2010 ◽  
Vol 103 (1) ◽  
pp. 479-489 ◽  
Author(s):  
Hey-Kyoung Lee ◽  
Kogo Takamiya ◽  
Kaiwen He ◽  
Lihua Song ◽  
Richard L. Huganir

Activity-dependent changes in excitatory synaptic transmission in the CNS have been shown to depend on the regulation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). In particular, several lines of evidence suggest that reversible phosphorylation of AMPAR subunit glutamate receptor 1 (GluR1, also referred to as GluA1 or GluR-A) plays a role in long-term potentiation (LTP) and long-term depression (LTD). We previously reported that regulation of serines (S) 831 and 845 on the GluR1 subunit may play a critical role in bidirectional synaptic plasticity in the Schaffer collateral inputs to CA1. Specifically, gene knockin mice lacking both S831 and S845 phosphorylation sites (“double phosphomutants”), where both serine residues were replaced by alanines (A), showed a faster decaying LTP and a deficit in LTD. To determine which of the two phosphorylation sites was responsible for the phenotype, we have now generated two lines of gene knockin mice: one that specifically lacks S831 (S831A mutants) and another that lacks only S845 (S845A mutants). We found that S831A mutants display normal LTP and LTD, whereas S845A mutants show a specific deficit in LTD. Taken together with our previous results from the “double phosphomutants,” our data suggest that either S831 or S845 alone may support LTP, whereas the S845 site is critical for LTD expression.


2019 ◽  
Author(s):  
Mason L. Yeh ◽  
Jessica R. Yasko ◽  
Eric S. Levine ◽  
Betty A. Eipper ◽  
Richard E. Mains

AbstractKalirin-7 (Kal7) is a Rac1/RhoG GEF and multidomain scaffold localized to the postsynaptic density which plays an important role in synaptic plasticity. Behavioral and physiological phenotypes observed in the Kal7 knockout mouse are quite specific: genetics of breeding, growth, strength and coordination are normal; Kal7 knockout animals self-administer cocaine far more than normal mice, show exaggerated locomotor responses to cocaine, but lack changes in dendritic spine morphology seen in wildtype mice; Kal7 knockout mice have depressed surface expression of GluN2B receptor subunits and exhibit marked suppression of long-term potentiation and depression in hippocampus, cerebral cortex, and spinal cord; and Kal7 knockout mice have dramatically blunted perception of pain. To address the underlying cellular and molecular mechanisms which are deranged by loss of Kal7, we administered intracellular blocking peptides to acutely change Kal7 function at the synapse, to determine if plasticity deficits in Kal7-/-mice are the product of developmental processes since conception, or could be detected on a much shorter time scale. We found that specific disruption of the interactions of Kal7 with PSD-95 or GluN2B resulted in significant suppression of long-term potentiation and long-term depression. Biochemical approaches indicated that Kal7 interacted with PSD-95 at multiple sites within Kal7.Graphical Table of ContentsThe postsynaptic density is an integral player in receiving, interpreting and storing signals transmitted by presynaptic terminals. The correct molecular composition is crucial for successful expression of synaptic plasticity. Key components of the postsynaptic density include ligand-gated ion channels, structural and binding proteins, and multidomain scaffolding plus enzymatic proteins. These studies address whether the multiple components of the synaptic density bind together in a static or slowly adapting molecular complex, or whether critical interactions are fluid on a minute-to-minute basis.


2020 ◽  
Author(s):  
Mason L. Yeh ◽  
Jessica R Yasko ◽  
Eric S. Levine ◽  
Betty A. Eipper ◽  
Richard Mains

Abstract Background: Kalirin-7 (Kal7) is a multidomain scaffold and guanine nucleotide exchange factor localized to the postsynaptic density, where Kal7 is crucial for synaptic plasticity. Kal7 knockout mice exhibit marked suppression of long-term potentiation and long-term depression in hippocampus, cerebral cortex and spinal cord, with depressed surface expression of GluN2B receptor subunits and dramatically blunted perception of pain. Kal7 knockout animals show exaggerated locomotor responses to psychostimulants and self-administer cocaine more enthusiastically than wildtype mice. Results: To address the underlying cellular and molecular mechanisms which are deranged by loss of Kal7, we infused candidate intracellular interfering peptides to acutely challenge the synaptic function(s) of Kal7 with potential protein binding partners, to determine if plasticity deficits in Kal7-/- mice are the product of developmental processes since conception, or could be produced on a much shorter time scale. We demonstrated that these small intracellular peptides disrupted normal long-term potentiation and long-term depression, strongly suggesting that maintenance of established interactions of Kal7 with PSD-95 and/or GluN2B is crucial to synaptic plasticity. Conclusions: Blockade of the Kal7-GluN2B interaction was most effective at blocking long-term potentiation, but had no effect on long-term depression. Biochemical approaches indicated that Kal7 interacted with PSD-95 at multiple sites within Kal7.


2021 ◽  
Author(s):  
Rui Zheng ◽  
Yonglan Du ◽  
Xintai Wang ◽  
Tailin Liao ◽  
Zhe Zhang ◽  
...  

Dynamic microtubules play a critical role in cell structure and function. In nervous system, microtubules specially extend into and out of synapses to regulate synaptic development and plasticity. However, the detailed polymerization especially the depolymerization mechanism that regulates dynamic microtubules in synapses is still unclear. In this study, we find that KIF2C, a dynamic microtubule depolymerization protein without known function in the nervous system, plays a vital role in the structural and functional plasticity of synapses and regulates cognitive function. Using RNAi knockdown and conditional knockout approaches, we showed that KIF2C regulates spine morphology and synaptic membrane expression of AMPA (α- amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid) receptors. Moreover, KIF2C deficiency leads to impaired excitatory transmission, long-term potentiation, and altered cognitive behaviors in mice. Mechanistically, KIF2C regulates microtubule dynamics and microtubule invasion of spines in neurons by its microtubule depolymerization capability in a neuronal activity-dependent manner. This study explores a novel function of KIF2C in the nervous system and provides an important regulatory mechanism on how microtubule invasion of spines regulates synaptic plasticity and cognition behaviors.


2015 ◽  
Vol 112 (43) ◽  
pp. E5883-E5890 ◽  
Author(s):  
Natasha K. Hussain ◽  
Gareth M. Thomas ◽  
Junjie Luo ◽  
Richard L. Huganir

AMPA receptors (AMPARs) are the major excitatory receptors of the brain and are fundamental to synaptic plasticity, memory, and cognition. Dynamic recycling of AMPARs in neurons is regulated through several types of posttranslational modification, including phosphorylation. Here, we identify a previously unidentified signal transduction cascade that modulates phosphorylation of serine residue 863 (S863) in the GluA1 AMPAR subunit and controls surface trafficking of GluA1 in neurons. Activation of the EphR–Ephrin signal transduction pathway enhances S863 phosphorylation. Further, EphB2 can interact with Zizimin1, a guanine–nucleotide exchange factor that activates Cdc42 and stimulates S863 phosphorylation in neurons. Among the numerous targets downstream of Cdc42, we determined that the p21-activated kinase-3 (PAK3) phosphorylates S863 in vitro. Moreover, specific loss of PAK3 expression and pharmacological inhibition of PAK both disrupt activity-dependent phosphorylation of S863 in cortical neurons. EphB2, Cdc42, and PAKs are broadly capable of controlling dendritic spine formation and synaptic plasticity and are implicated in multiple cognitive disorders. Collectively, these data delineate a novel signal cascade regulating AMPAR trafficking that may contribute to the molecular mechanisms that govern learning and cognition.


2020 ◽  
Vol 21 (3) ◽  
pp. 981 ◽  
Author(s):  
Violetta O. Ivanova ◽  
Pavel M. Balaban ◽  
Natalia V. Bal

Nitric oxide (NO) is a gaseous molecule with a large number of functions in living tissue. In the brain, NO participates in numerous intracellular mechanisms, including synaptic plasticity and cell homeostasis. NO elicits synaptic changes both through various multi-chain cascades and through direct nitrosylation of targeted proteins. Along with the N-methyl-d-aspartate (NMDA) glutamate receptors, one of the key components in synaptic functioning are α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors—the main target for long-term modifications of synaptic effectivity. AMPA receptors have been shown to participate in most of the functions important for neuronal activity, including memory formation. Interactions of NO and AMPA receptors were observed in important phenomena, such as glutamatergic excitotoxicity in retinal cells, synaptic plasticity, and neuropathologies. This review focuses on existing findings that concern pathways by which NO interacts with AMPA receptors, influences properties of different subunits of AMPA receptors, and regulates the receptors’ surface expression.


Sign in / Sign up

Export Citation Format

Share Document