scholarly journals Modulation of AMPA Receptors by Nitric Oxide in Nerve Cells

2020 ◽  
Vol 21 (3) ◽  
pp. 981 ◽  
Author(s):  
Violetta O. Ivanova ◽  
Pavel M. Balaban ◽  
Natalia V. Bal

Nitric oxide (NO) is a gaseous molecule with a large number of functions in living tissue. In the brain, NO participates in numerous intracellular mechanisms, including synaptic plasticity and cell homeostasis. NO elicits synaptic changes both through various multi-chain cascades and through direct nitrosylation of targeted proteins. Along with the N-methyl-d-aspartate (NMDA) glutamate receptors, one of the key components in synaptic functioning are α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors—the main target for long-term modifications of synaptic effectivity. AMPA receptors have been shown to participate in most of the functions important for neuronal activity, including memory formation. Interactions of NO and AMPA receptors were observed in important phenomena, such as glutamatergic excitotoxicity in retinal cells, synaptic plasticity, and neuropathologies. This review focuses on existing findings that concern pathways by which NO interacts with AMPA receptors, influences properties of different subunits of AMPA receptors, and regulates the receptors’ surface expression.

2020 ◽  
pp. 127-154
Author(s):  
Daeyeol Lee

Long-lasting effects of brief sensory experience must be mediated by long-term changes in the strength of connections between neurons in the brain. This phenomenon is known as synaptic plasticity, and the physical location of such change is referred to as the engram. This chapter illustrates how multiple learning and memory systems might be implemented in different anatomical modules of the brain and what role dopamine plays in learning. Most of these neurobiological and behavioral observations can be accounted for by reinforcement learning theory. The goal of reinforcement is to understand how utilities must be altered by experience so that rational choices based on the utility functions can result in the most desirable outcomes through learning.


2002 ◽  
Vol 87 (3) ◽  
pp. 1554-1571 ◽  
Author(s):  
Kenji Yamamoto ◽  
Yasushi Kobayashi ◽  
Aya Takemura ◽  
Kenji Kawano ◽  
Mitsuo Kawato

To investigate how cerebellar synaptic plasticity guides the acquisition and adaptation of ocular following response (OFR), a large-scale network model was developed. The model includes the cerebral medial superior temporal area (MST), Purkinje cells (P cells) of the ventral paraflocculus, the accessory optic and climbing fiber systems, the brain stem oculomotor network, and the oculomotor plant. The model reconstructed temporal profiles of both firing patterns of MST neurons and P cells and eye movements. Model MST neurons ( n = 1,080) were set to be driven by retinal error and exhibited 12 preferred directions, 30 preferred velocities, and 3 firing waveforms. Correspondingly, each model P cell contained 1,080 excitatory synapses from granule cell axons (GCA) and 1,080 inhibitory synapses. P cells ( n = 40) were classified into four groups by their laterality (hemisphere) and by preferred directions of their climbing fiber inputs (CF) (contralateral or upward). The brain stem neural circuit and the oculomotor plant were modeled on the work of Yamamoto et al. The initial synaptic weights on the P cells were set randomly. At the beginning, P cell simple spikes were not well modulated by visual motion, and the eye was moved only slightly by the accessory optic system. The synaptic weights were updated according to integral-differential equation models of physiologically demonstrated synaptic plasticity: long-term depression and long-term potentiation for GCA synapses and rebound potentiation for inhibitory synapses. We assumed that maximum plasticity was induced when GCA inputs preceded CF inputs by 200 ms. After more than 10,000 presentations of ramp-step visual motion, the strengths of both the excitatory and inhibitory synapses were modified. Subsequently, the simple spike responses became well developed, and ordinary OFRs were acquired. The preferred directions of simple spikes became the opposite of those of CFs. Although the model MST neurons were set to possess a wide variety of firing characteristics, the model P cells acquired only downward or ipsilateral preferred directions, high preferred velocities and stereotypical firing waveforms. Therefore the drastic transition of the neural representation from the population codes in the MST to the firing-rate codes of simple spikes were learned at the GCA-P cell synapses and inhibitory cells-P cell synapses. Furthermore, the model successfully reproduced the gain- and directional-adaptation of OFR, which was demonstrated by manipulating the velocity and direction of visual motion, respectively. When we assumed that synaptic plasticity could only occur if CF inputs preceded GCA inputs, the ordinary OFR were acquired but neither the gain-adaptation nor the directional adaptation could be reproduced.


1999 ◽  
Vol 82 (4) ◽  
pp. 2024-2028 ◽  
Author(s):  
Hongyan Wang ◽  
John J. Wagner

The activity history of a given neuron has been suggested to influence its future responses to synaptic input in one prominent model of experience-dependent synaptic plasticity proposed by Bienenstock, Cooper, and Munro (BCM theory). Because plasticity of synaptic plasticity (i.e., metaplasticity) is similar in concept to aspects of the BCM proposal, we have tested the possibility that a form of metaplasticity induced by a priming stimulation protocol might exhibit BCM-like characteristics. CA1 field excitatory postsynaptic potentials (EPSPs) obtained from rat hippocampal slices were used to monitor synaptic responses before and after conditioning stimuli (3–100 Hz) of the Schaffer collateral inputs. A substantial rightward shift (>5-fold) in the frequency threshold between long-term depression (LTD) and long-term potentiation (LTP) was observed <1 h after priming. This change in the LTD/P crossover point occurred at both primed and unprimed synaptic pathways. These results provide new support for the existence of a rapid, heterosynaptic, experience-dependent mechanism that is capable of modifying the synaptic plasticity phenomena that are commonly proposed to be important for developmental and learning/memory processes in the brain.


2020 ◽  
Vol 6 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Yosef Avchalumov ◽  
Chitra D. Mandyam

Alcohol is one of the oldest pharmacological agents used for its sedative/hypnotic effects, and alcohol abuse and alcohol use disorder (AUD) continues to be major public health issue. AUD is strongly indicated to be a brain disorder, and the molecular and cellular mechanism/s by which alcohol produces its effects in the brain are only now beginning to be understood. In the brain, synaptic plasticity or strengthening or weakening of synapses, can be enhanced or reduced by a variety of stimulation paradigms. Synaptic plasticity is thought to be responsible for important processes involved in the cellular mechanisms of learning and memory. Long-term potentiation (LTP) is a form of synaptic plasticity, and occurs via N-methyl-D-aspartate type glutamate receptor (NMDAR or GluN) dependent and independent mechanisms. In particular, NMDARs are a major target of alcohol, and are implicated in different types of learning and memory. Therefore, understanding the effect of alcohol on synaptic plasticity and transmission mediated by glutamatergic signaling is becoming important, and this will help us understand the significant contribution of the glutamatergic system in AUD. In the first part of this review, we will briefly discuss the mechanisms underlying long term synaptic plasticity in the dorsal striatum, neocortex and the hippocampus. In the second part we will discuss how alcohol (ethanol, EtOH) can modulate long term synaptic plasticity in these three brain regions, mainly from neurophysiological and electrophysiological studies. Taken together, understanding the mechanism(s) underlying alcohol induced changes in brain function may lead to the development of more effective therapeutic agents to reduce AUDs.


2003 ◽  
Vol 358 (1432) ◽  
pp. 715-720 ◽  
Author(s):  
Fabrice Duprat ◽  
Michael Daw ◽  
Wonil Lim ◽  
Graham Collingridge ◽  
John Isaac

AMPA-type glutamate receptors mediate most fast excitatory synaptic transmissions in the mammalian brain. They are critically involved in the expression of long-term potentiation and long-term depression, forms of synaptic plasticity that are thought to underlie learning and memory. A number of synaptic proteins have been identified that interact with the intracellular C-termini of AMPA receptor subunits. Here, we review recent studies and present new experimental data on the roles of these interacting proteins in regulating the AMPA receptor function during basal synaptic transmission and plasticity.


2016 ◽  
Vol 23 (3) ◽  
pp. 221-231 ◽  
Author(s):  
Victor Briz ◽  
Michel Baudry

Although calpain was proposed to participate in synaptic plasticity and learning and memory more than 30 years ago, the mechanisms underlying its activation and the roles of different substrates have remained elusive. Recent findings have provided evidence that the two major calpain isoforms in the brain, calpain-1 and calpain-2, play opposite functions in synaptic plasticity. In particular, while calpain-1 activation is the initial trigger for certain forms of synaptic plasticity, that is, long-term potentiation, calpain-2 activation restricts the extent of plasticity. Moreover, while calpain-1 rapidly cleaves regulatory and cytoskeletal proteins, calpain-2-mediated stimulation of local protein synthesis reestablishes protein homeostasis. These findings have important implications for our understanding of learning and memory and disorders associated with impairment in these processes.


2010 ◽  
Vol 391 (4) ◽  
Author(s):  
Shigetaka Yoshida

Abstract Klk8 is a tryptic serine protease with limited substrate specificity. Klk8 mRNA is expressed in many developing organs, whereas its expression is confined to limited regions, including the hippocampus, in adults. In the hippocampus, Klk8 is involved in activity-dependent synaptic changes such as long-term potentiation, which was found to be suppressed in Klk8 knockout (KO) mice. Oligodendrocytes only expressed Klk8 mRNA after injury to the central nervous system. The epidermis of the skin is one of the tissues that exhibits a high level of KLK8 expression. Klk8 might be involved in desquamation through the degradation of adhesive molecules that connect layers of the epidermis. Klk8 might thus be involved in tissue development and rearrangement.


2007 ◽  
Vol 107 (6) ◽  
pp. 963-970 ◽  
Author(s):  
Ping Zhao ◽  
Longyun Peng ◽  
Liaoliao Li ◽  
Xuebing Xu ◽  
Zhiyi Zuo

Background Preconditioning the brain with relatively safe drugs seems to be a viable option to reduce ischemic brain injury. The authors and others have shown that the volatile anesthetic isoflurane can precondition the brain against ischemia. Here, the authors determine whether isoflurane preconditioning improves long-term neurologic outcome after brain ischemia. Methods Six-day-old rats were exposed to 1.5% isoflurane for 30 min at 24 h before the brain hypoxia-ischemia that was induced by left common carotid arterial ligation and then exposure to 8% oxygen for 2 h. The neuropathology, motor coordination, and learning and memory functions were assayed 1 month after the brain ischemia. Western analysis was performed to quantify the expression of the heat shock protein 70, Bcl-2, and survivin 24 h after isoflurane exposure. Results The mortality was 45% after brain hypoxia-ischemia. Isoflurane preconditioning did not affect this mortality. However, isoflurane preconditioning attenuated ischemia-induced loss of neurons and brain tissues, such as cerebral cortex and hippocampus in the survivors. Isoflurane also improved the motor coordination of rats at 1 month after ischemia. The learning and memory functions as measured by performance of Y-maze and social recognition tasks in the survivors were not affected by the brain hypoxia-ischemia or isoflurane preconditioning. The expression of Bcl-2, a well-known antiapoptotic protein, in the hippocampus is increased after isoflurane exposure. This increase was reduced by the inhibitors of inducible nitric oxide synthase. Inducible nitric oxide synthase inhibition also abolished isoflurane preconditioning-induced neuroprotection. Conclusions Isoflurane preconditioning improved the long-term neurologic outcome after brain ischemia. Inducible nitric oxide synthase may be involved in this neuroprotection.


2019 ◽  
Author(s):  
Mason L. Yeh ◽  
Jessica R. Yasko ◽  
Eric S. Levine ◽  
Betty A. Eipper ◽  
Richard E. Mains

AbstractKalirin-7 (Kal7) is a Rac1/RhoG GEF and multidomain scaffold localized to the postsynaptic density which plays an important role in synaptic plasticity. Behavioral and physiological phenotypes observed in the Kal7 knockout mouse are quite specific: genetics of breeding, growth, strength and coordination are normal; Kal7 knockout animals self-administer cocaine far more than normal mice, show exaggerated locomotor responses to cocaine, but lack changes in dendritic spine morphology seen in wildtype mice; Kal7 knockout mice have depressed surface expression of GluN2B receptor subunits and exhibit marked suppression of long-term potentiation and depression in hippocampus, cerebral cortex, and spinal cord; and Kal7 knockout mice have dramatically blunted perception of pain. To address the underlying cellular and molecular mechanisms which are deranged by loss of Kal7, we administered intracellular blocking peptides to acutely change Kal7 function at the synapse, to determine if plasticity deficits in Kal7-/-mice are the product of developmental processes since conception, or could be detected on a much shorter time scale. We found that specific disruption of the interactions of Kal7 with PSD-95 or GluN2B resulted in significant suppression of long-term potentiation and long-term depression. Biochemical approaches indicated that Kal7 interacted with PSD-95 at multiple sites within Kal7.Graphical Table of ContentsThe postsynaptic density is an integral player in receiving, interpreting and storing signals transmitted by presynaptic terminals. The correct molecular composition is crucial for successful expression of synaptic plasticity. Key components of the postsynaptic density include ligand-gated ion channels, structural and binding proteins, and multidomain scaffolding plus enzymatic proteins. These studies address whether the multiple components of the synaptic density bind together in a static or slowly adapting molecular complex, or whether critical interactions are fluid on a minute-to-minute basis.


Sign in / Sign up

Export Citation Format

Share Document