scholarly journals A novel function for Rab1 and Rab11 during secretory granule maturation

2021 ◽  
Author(s):  
Sarah D. Neuman ◽  
Annika R. Lee ◽  
Jane E. Selegue ◽  
Amy T. Cavanagh ◽  
Arash Bashirullah

Regulated exocytosis is an essential process whereby specific cargo proteins are secreted in a stimulus-dependent manner. Cargo-containing secretory granules are synthesized in the trans-Golgi Network (TGN); after budding from the TGN, granules undergo modifications, including an increase in size. These changes occur during a poorly understood process called secretory granule maturation. Here we leverage the Drosophila larval salivary glands as a model to characterize a novel role for Rab GTPases during granule maturation. We find that secretory granules increase in size ∼300-fold between biogenesis and release, and loss of Rab1 or Rab11 reduces granule size. Surprisingly, we find that Rab1 and Rab11 localize to secretory granule membranes. Rab11 associates with granule membranes throughout maturation, and Rab11 recruits Rab1. In turn, Rab1 associates specifically with immature granules and drives granule growth. In addition to roles in granule growth, both Rab1 and Rab11 appear to have additional functions during exocytosis; Rab11 function is necessary for exocytosis, while the presence of Rab1 on immature granules may prevent precocious exocytosis. Overall, these results highlight a new role for Rab GTPases in secretory granule maturation.

2021 ◽  
Author(s):  
Sarah D Neuman ◽  
Annika R Lee ◽  
Jane E Selegue ◽  
Amy T Cavanagh ◽  
Arash Bashirullah

Regulated exocytosis is an essential process whereby professional secretory cells synthesize and secrete specific cargo proteins in a stimulus-dependent manner. Cargo-containing secretory granules are synthesized in the trans-Golgi Network (TGN); after budding from the TGN, granules undergo many modifications, including a dramatic increase in size. These changes occur during a poorly understood process called secretory granule maturation. Here we leverage the professional secretory cells of the Drosophila larval salivary glands as a model system to characterize a novel and unexpected role for Rab GTPases during secretory granule maturation. We find that secretory granules in the larval salivary glands increase in size ~300-fold between biogenesis and release, and loss of Rab1 or Rab11 dramatically reduces granule size. Surprisingly, we find that Rab1 and Rab11 protein localize to secretory granule membranes. Rab11 associates with granule membranes throughout the maturation process, and Rab11 is required for recruitment of Rab1. In turn, Rab1 associates specifically with immature secretory granules and drives granule growth. In addition to their roles in granule growth, both Rab1 and Rab11 appear to have additional roles during exocytosis; Rab11 function is necessary for exocytosis, while the presence of Rab1 on immature granules may prevent precocious exocytosis. Overall, these results highlight a new and unexpected role for Rab GTPases in secretory granule maturation.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Wen Du ◽  
Maoge Zhou ◽  
Wei Zhao ◽  
Dongwan Cheng ◽  
Lifen Wang ◽  
...  

Secretory granules, also known as dense core vesicles, are generated at the trans-Golgi network and undergo several maturation steps, including homotypic fusion of immature secretory granules (ISGs) and processing of prehormones to yield active peptides. The molecular mechanisms governing secretory granule maturation are largely unknown. Here, we investigate a highly conserved protein named HID-1 in a mouse model. A conditional knockout of HID-1 in pancreatic β cells leads to glucose intolerance and a remarkable increase in the serum proinsulin/insulin ratio caused by defective proinsulin processing. Large volume three-dimensional electron microscopy and immunofluorescence imaging reveal that ISGs are much more abundant in the absence of HID-1. We further demonstrate that HID-1 deficiency prevented secretory granule maturation by blocking homotypic fusion of immature secretory granules. Our data identify a novel player during the early maturation of immature secretory granules.


2006 ◽  
Vol 173 (2) ◽  
pp. 241-251 ◽  
Author(s):  
Malika Ahras ◽  
Grant P. Otto ◽  
Sharon A. Tooze

In neuroendocrine PC12 cells, immature secretory granules (ISGs) mature through homotypic fusion and membrane remodeling. We present evidence that the ISG-localized synaptotagmin IV (Syt IV) is involved in ISG maturation. Using an in vitro homotypic fusion assay, we show that the cytoplasmic domain (CD) of Syt IV, but not of Syt I, VII, or IX, inhibits ISG homotypic fusion. Moreover, Syt IV CD binds specifically to ISGs and not to mature secretory granules (MSGs), and Syt IV binds to syntaxin 6, a SNARE protein that is involved in ISG maturation. ISG homotypic fusion was inhibited in vivo by small interfering RNA–mediated depletion of Syt IV. Furthermore, the Syt IV CD, as well as Syt IV depletion, reduces secretogranin II (SgII) processing by prohormone convertase 2 (PC2). PC2 is found mostly in the proform, suggesting that activation of PC2 is also inhibited. Granule formation, and the sorting of SgII and PC2 from the trans-Golgi network into ISGs and MSGs, however, is not affected. We conclude that Syt IV is an essential component for secretory granule maturation.


The formation of mucus in goblet cells and its relation to the Golgi apparatus has been studied by various workers. Nassanow (1923) showed clearly that the mucin granules in the goblet cells of Triton originated in the Golgi apparatus, and so brought secretion in these cells into line with his theory of the bound secretion. More recently Clara (1926) has shown in the goblet cells of birds that the mucin first appears in the region next to the nucleus, between it and the gland lumen. Florey (1932, a, b ) has considered this more extensively in two recent papers, and for a number of mammals has shown that the mucin granules of goblet cells first form in the meshes of the Golgi network. In epithelial cells of the mouse vagina, undergoing conversion into mucous cells, he has found that the same process occurs. In a recent investigation of secretory formation in the salivary glands and pancreas it was found by the present author that in every cell type examined the young secretory granules first appeared in the basal region of the cell in relation to the mitochondria. Subsequent emigration occurred into the Golgi zone, where they underwent conversion into mature secretory granules. In the mucous cells of the salivary glands it was shown that these newly formed granules might be stained intravitam by Janus green or neutral red, and that in fixed preparations they stained selectively with acid fuchsin as described by Noll (1902), In the light of this work it appeared probable that while mucin formation might occur in the Golgi zone of the goblet cells as described by these authors, the origin of the granules might lie in the basal region of the cell.


2001 ◽  
Vol 12 (5) ◽  
pp. 1353-1365 ◽  
Author(s):  
Rüdiger Rudolf ◽  
Thorsten Salm ◽  
Amin Rustom ◽  
Hans-Hermann Gerdes

Secretory granules store neuropeptides and hormones and exhibit regulated exocytosis upon appropriate cellular stimulation. They are generated in the trans-Golgi network as immature secretory granules, short-lived vesicular intermediates, which undergo a complex and poorly understood maturation process. Due to their short half-life and low abundance, real-time studies of immature secretory granules have not been previously possible. We describe here a pulse/chase-like system based on the expression of a human chromogranin B-GFP fusion protein in neuroendocrine PC12 cells, which permits direct visualization of the budding of immature secretory granules and their dynamics during maturation. Live cell imaging revealed that newly formed immature secretory granules are transported in a direct and microtubule-dependent manner within a few seconds to the cell periphery. Our data suggest that the cooperative action of microtubules and actin filaments restricts immature secretory granules to the F-actin-rich cell cortex, where they move randomly and mature completely within a few hours. During this maturation period, secretory granules segregate into pools of different motility. In a late phase of maturation, 60% of secretory granules were found to be immobile and about half of these underwent F-actin-dependent tethering.


1997 ◽  
Vol 321 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Sylvie URBÉ ◽  
Andrea S. DITTIÉ ◽  
Sharon A. TOOZE

We have previously characterized the processing of secretogranin II (SgII) in PC12 cells that were stably transfected with the endopeptidase PC2. Here we show that processing of SgII can be observed in isolated immature secretory granules (ISGs) derived from this cell line in a temperature- and ATP-dependent manner. The stimulatory effect of ATP on processing can be attributed to the activation of the vacuolar H+-ATPase and a concomitant decrease in intragranular pH. The immature secretory granule therefore provides an adequate environment for correct processing of SgII by PC2. The rate of SgII processing was strongly dependent on the intragranular pH, suggesting that processing of SgII can be used as a pH indicator for the granule interior. A standard curve was prepared using SgII processing in ISGs equilibrated at a range of pH values. The extent of processing in ISGs incubated in the presence of ATP at physiological pH was compared with the standard curve, and the intragranular pH was determined. From these observations, we propose an intragranular pH of 6.3±0.1 for ISGs in a physiological buffer in the presence of ATP. Hence, the pH of ISGs seems to be similar to the pH of the trans-Golgi network (TGN) and is clearly higher than the pH of mature secretory granules (pH 5.0–5.5). Interestingly, no processing of SgII could be observed in a membrane fraction that is highly enriched in TGN under conditions for which processing was readily obtained in isolated ISGs.


2021 ◽  
Author(s):  
Jennifer Reck ◽  
Nicole Beuret ◽  
Erhan Demirci ◽  
Cristina Prescianotto-Baschong ◽  
Martin Spiess

ABSTRACTUnlike constitutively secreted proteins, peptide hormones are stored in densely packed secretory granules, before regulated release upon stimulation. Secretory granules are formed at the trans-Golgi network (TGN) by self-aggregation of prohormones as functional amyloids. The nonapeptide hormone vasopressin, which forms a small disulfide loop, was shown to be responsible for granule formation of its precursor in the TGN as well as for toxic fibrillar aggregation of unfolded mutants in the endoplasmic reticulum (ER). Several other hormone precursors also contain similar small disulfide loops suggesting their function as a general device to mediate aggregation for granule biogenesis. To test this hypothesis, we studied the capacity of small disulfide loops of different hormone precursors to mediate aggregation in the ER and the TGN. They indeed induced ER aggregation although to different extents in Neuro-2a and COS-1 cells. Fused to a constitutively secreted reporter protein, they also promoted sorting into secretory granules, enhanced stimulated secretion, and increased Lubrol insolubility in AtT20 cells. These results support the hypothesis that small disulfide loops act as novel signals for secretory granule biogenesis and sorting by self-aggregation.


1992 ◽  
Vol 118 (3) ◽  
pp. 521-529 ◽  
Author(s):  
R Kuliawat ◽  
P Arvan

We have suggested the existence of a novel "constitutive-like" secretory pathway in pancreatic islets, which preferentially conveys a fraction of newly synthesized C-peptide, insulin, and proinsulin, and is related to the presence of immature secretory granules (IGs). Regulated exocytosis of IGs results in an equimolar secretion of C-peptide and insulin; however an assay of the constitutive-like secretory pathway recently demonstrated that this route conveys newly synthesized C-peptide in molar excess of insulin (Arvan, P., R. Kuliawat, D. Prabakaran, A.-M. Zavacki, D. Elahi, S. Wang, and D. Pilkey. J. Biol. Chem. 266:14171-14174). We now use this assay to examine the kinetics of constitutive-like secretion. Though its duration is much shorter than the life of mature granules under physiologic conditions, constitutive-like secretion appears comparatively slow (t1/2 approximately equal to 1.5 h) compared with the rate of proinsulin traffic through the ER and Golgi stacks. We have examined whether this slow rate is coupled to the rate of IG exit from the trans-Golgi network (TGN). Escape from the 20 degrees C temperature block reveals a t1/2 less than or equal to 12 min from TGN exit to stimulated release of IGs; the time required for IG formation is too rapid to be rate limiting for constitutive-like secretion. Further, conditions are described in which constitutive-like secretion is blocked yet regulated discharge of IGs remains completely intact. Thus, constitutive-like secretion appears to represent an independent secretory pathway that is kinetically restricted to a specific granule maturation period. The data support a model in which passive sorting due to insulin crystallization results in enrichment of C-peptide in membrane vesicles that bud from IGs to initiate the constitutive-like secretory pathway.


Author(s):  
Sarah D. Neuman ◽  
Erica L. Terry ◽  
Jane E. Selegue ◽  
Amy T. Cavanagh ◽  
Arash Bashirullah

ABSTRACTIntracellular trafficking is a basic and essential cellular function required for delivery of proteins to the appropriate subcellular destination; this process is especially demanding in professional secretory cells, which synthesize and secrete massive quantities of cargo proteins via regulated exocytosis. The Drosophila larval salivary glands are professional secretory cells that synthesize and secrete mucin proteins at the onset of metamorphosis. Using the larval salivary glands as a model system, we have identified a role for the highly conserved retromer complex in trafficking of secretory granule membrane proteins. We demonstrate that retromer-dependent trafficking via endosomal tubules is induced at the onset of secretory granule biogenesis, and that recycling via endosomal tubules is required for delivery of essential secretory granule membrane proteins to nascent granules. Without retromer function, nascent granules do not contain the proper membrane proteins; as a result, cargo from these defective granules is mistargeted to Rab7-positive endosomes, where it progressively accumulates to generate dramatically enlarged endosomes. Retromer complex dysfunction is strongly associated with Alzheimer’s disease, characterized by accumulation of amyloid β (Aβ). We show that amyloid precursor protein (APP) undergoes regulated exocytosis and accumulates within enlarged endosomes in retromer-deficient cells. These results highlight recycling of secretory granule membrane proteins as a critical step during secretory granule maturation and provide new insights into our understanding of retromer complex function in secretory cells. Our data also suggests that misrouting of secretory cargo, including APP, may contribute to the progressive nature of neurodegenerative disease.SUMMARY STATEMENTRetromer complex dysfunction is implicated in neurodegeneration. Here the authors show a new role for the retromer complex in recycling of secretory membrane and cargo proteins during regulated exocytosis.


Sign in / Sign up

Export Citation Format

Share Document