Pollination Sub-Systems Distinguished by Pollen Tube Arrest after Incompatible Interspecific Crosses in Rhododendron (Ericaceae)

1982 ◽  
Vol 53 (1) ◽  
pp. 255-277
Author(s):  
ELIZABETH G. WILLIAMS ◽  
BRUCE R. KNOX ◽  
JOHN L. ROUSE

The cytology of compatible and interspecific incompatible pollinations has been followed in selected species of the genus Rhododendron (Ericaceae). Pollinated pistils were fixed, cleared, stained in decolourized aniline blue, and observed by epifluorescence microscopy. Ten different abnormalities of arrested pollen tube tips have been detected, including burst, tapered, swollen, coiled, spiralling, spiky and variable diameter syndromes. A series of five errors of callose deposition in incompatible tubes has also been defined. Six different regions in the pistil for expression of pollen tube arrest have been found, including the stigmatic exudate, the mucilage of the upper and lower style canal, the ovary loculus, the micropyle. There may also be abnormal behaviour after entry into the embryo sac. Both the site of pollen tube arrest within the pistil, and the error syndrome of tip growth and callose deposition anomalies, are characteristic of each interspecific cross. These results are discussed in relation to the genetic control of reproduction.

1986 ◽  
Vol 34 (4) ◽  
pp. 413 ◽  
Author(s):  
EG Williams ◽  
V Kaul ◽  
JL Rouse ◽  
BF Palser

Frequent overgrowths of pollen tubes within the embryo sac are characteristic of a number of interspecific crosses in the genus Rhododendron (Ericaceae). The combined techniques of sectioning, squashing and whole-ovule clearing have confirmed that in ovules showing this phenomenon the pollen tube fails to terminate growth and release sperms on entry into a synergid; instead it continues to grow beyond the synergid and egg cell, often filling the main body of the embryo sac with a coiled and distorted mass. Such ovules fail to develop further. The occurrence and possible causes of this error syndrome are discussed.


1972 ◽  
Vol 50 (11) ◽  
pp. 2117-2124 ◽  
Author(s):  
Veronica A. Martinson

In a comparative study of embryo development in intraspecific (U6 × K5/353) and interspecific (U6 × T33) crosses of Theobroma, the development of the embryo sac as described by previous authors was confirmed. Disintegration of synergids showed that the growth of the pollen through the style was slightly quicker in intraspecific than in interspecific crosses, but the number of embryo sacs which had received male nuclei 3 days after pollination was about the same. Although gametic fusion and endosperm formation in the intraspecific cross was in advance of those in interspecific cross, the major blockage in species hybridization occurred subsequent to fertilization, and in most instances, well after the proembryo stage. Abnormal cell division and cell differentiation were contributory factors to poor seed formation. Possible causes of the abnormality have been discussed.Autonomous enlargement and the binucleate appearance of the egg cells in the unpollinated flower suggested a tendency to parthenogenesis and diploidization of the egg cell, under special conditions. Although a large proportion of the cacao seeds observed in the species crosses are most probably intraspecific seedlings arising from contamination after controlled pollinations, the occurrence of a small number of true maternal seeds cannot be ruled out altogether.


2018 ◽  
Vol 19 (12) ◽  
pp. 3710 ◽  
Author(s):  
Shujuan Zhang ◽  
Chunbo Wang ◽  
Min Xie ◽  
Jinyu Liu ◽  
Zhe Kong ◽  
...  

The angiosperm pollen tube delivers two sperm cells into the embryo sac through a unique growth strategy, named tip growth, to accomplish fertilization. A great deal of experiments have demonstrated that actin bundles play a pivotal role in pollen tube tip growth. There are two distinct actin bundle populations in pollen tubes: the long, rather thick actin bundles in the shank and the short, highly dynamic bundles near the apex. With the development of imaging techniques over the last decade, great breakthroughs have been made in understanding the function of actin bundles in pollen tubes, especially short subapical actin bundles. Here, we tried to draw an overall picture of the architecture, functions and underlying regulation mechanism of actin bundles in plant pollen tubes.


2021 ◽  
Vol 40 (2) ◽  
pp. 205-222
Author(s):  
Monica Scali ◽  
Alessandra Moscatelli ◽  
Luca Bini ◽  
Elisabetta Onelli ◽  
Rita Vignani ◽  
...  

AbstractPollen tube elongation is characterized by a highly-polarized tip growth process dependent on an efficient vesicular transport system and largely mobilized by actin cytoskeleton. Pollen tubes are an ideal model system to study exocytosis, endocytosis, membrane recycling, and signaling network coordinating cellular processes, structural organization and vesicular trafficking activities required for tip growth. Proteomic analysis was applied to identifyNicotiana tabacumDifferentially Abundant Proteins (DAPs) after in vitro pollen tube treatment with membrane trafficking inhibitors Brefeldin A, Ikarugamycin and Wortmannin. Among roughly 360 proteins separated in two-dimensional gel electrophoresis, a total of 40 spots visibly changing between treated and control samples were identified by MALDI-TOF MS and LC–ESI–MS/MS analysis. The identified proteins were classified according to biological processes, and most proteins were related to pollen tube energy metabolism, including ammino acid synthesis and lipid metabolism, structural features of pollen tube growth as well modification and actin cytoskeleton organization, stress response, and protein degradation. In-depth analysis of proteins corresponding to energy-related pathways revealed the male gametophyte to be a reliable model of energy reservoir and dynamics.


2021 ◽  
Vol 22 (5) ◽  
pp. 2603
Author(s):  
Ana Marta Pereira ◽  
Diana Moreira ◽  
Sílvia Coimbra ◽  
Simona Masiero

Angiosperm reproduction relies on the precise growth of the pollen tube through different pistil tissues carrying two sperm cells into the ovules’ embryo sac, where they fuse with the egg and the central cell to accomplish double fertilization and ultimately initiate seed development. A network of intrinsic and tightly regulated communication and signaling cascades, which mediate continuous interactions between the pollen tube and the sporophytic and gametophytic female tissues, ensures the fast and meticulous growth of pollen tubes along the pistil, until it reaches the ovule embryo sac. Most of the pollen tube growth occurs in a specialized tissue—the transmitting tract—connecting the stigma, the style, and the ovary. This tissue is composed of highly secretory cells responsible for producing an extensive extracellular matrix. This multifaceted matrix is proposed to support and provide nutrition and adhesion for pollen tube growth and guidance. Insights pertaining to the mechanisms that underlie these processes remain sparse due to the difficulty of accessing and manipulating the female sporophytic tissues enclosed in the pistil. Here, we summarize the current knowledge on this key step of reproduction in flowering plants with special emphasis on the female transmitting tract tissue.


1986 ◽  
Vol 64 (2) ◽  
pp. 282-291 ◽  
Author(s):  
V. Kaul ◽  
J. L. Rouse ◽  
E. G. Williams

Early events in the embryo sac of Rhododendron kawakamii and R. retusum have been studied after compatible self-pollinations and eight interspecific crosses, using sectioned ovaries, pistil squashes, and seed-set data. Ovules of Rhododendron kawakamii and R. retusum are anatropous, unitegmic, and tenuinucellate, with a typical eight-nucleate, seven-celled embryo sac. Fertilization normally occurs 4–5 days after pollination. The zygote lays down a callose wall but remains undivided during the first 13–15 days after pollination. The primary endosperm nucleus divides soon after fertilization, and development is cellular ab initio. Crosses of R. kawakamii (♂) with R. santapaui and R. retusum and crosses of R. retusum (♂) with R. kawakamii, R. santapaui, R. ovatum, and R. tashiroi showed apparently normal fertilization in a majority of ovules entered by pollen tubes. In crosses of R. kawakamii (♂) with R. quadrasianum and Kalmia latifolia entry of pollen tubes into ovules was delayed and frequently abnormal. Apart from compatible self-pollinations of R. kawakamii an R. retusum, only the cross of R. kawakamii (♂) with R. santapaui produced healthy seedlings. Of the remaining seven interspecific crosses only three showed significant embryo development in control pistils left to mature in situ. Similarities and differences in the breeding behaviour of R. kawakamii and R. retusum are discussed with reference to their taxonomic grouping within subsection Pseudovireya.


HortScience ◽  
2017 ◽  
Vol 52 (8) ◽  
pp. 1043-1047
Author(s):  
Haiyan Xu ◽  
Folian Li ◽  
Yuezhi Pan ◽  
Xun Gong

The investigation of hybridization processes and embryogenesis of heterozygote is an effective approach for early hybrids’ identification, which could provide reliable information for successful crossbreeding. In this study, we reported the whole hybridization processes of the direct cross and reciprocal cross between Michelia yunnanensis Franch. ex Finet et Gagnep. and Michelia crassipes Law using fluorescence microscopy after aniline blue staining, with the pollen germination on stigmas, pollen tube growth in styles, and subsequent extension into the embryo sac as well as the double fertilization processes are documented in detail. The M. yunnanensis × M. crassipes combination displayed considerable cross-compatibility, and the heterozygote embryogenesis was further observed with an approach of modified cryosectioning technique. Besides, the whole formation processes of hybrid seeds from artificial pollination to maturation were successfully observed. However, in the reciprocal cross, we found incompatibility between pollen grains of M. yunnanensis and stigmas of M. crassipes for the reason of hysteretic identification, as well as the abnormal callose deposition which belongs to the prefertilization barriers. This is the first study in which the complete and clear hybridization processes in Michelia were reported. We inferred that unilateral incompatibility of M. crassipes detected in this study may also exist in some other Michelia species. In artificial hybridization practices, we suggest some special treatments for overcoming prefertilization barrier should be taken when treating M. crassipes as the maternal parent.


1973 ◽  
Vol 12 (2) ◽  
pp. 403-419 ◽  
Author(s):  
D. DE NETTANCOURT ◽  
M. DEVREUX ◽  
A. BOZZINI ◽  
M. CRESTI ◽  
E. PACINI ◽  
...  

The experimental results obtained show that the tip of the incompatible pollen tube bursts open after the outer-wall has considerably expanded in the intercellular spaces of the conducting tissue and the inner-wall has disappeared and numerous particles have accumulated in the tube cytoplasm. These particles, which measure approximately 0.2 µm in diameter and give a weak reaction to the test of Thiéry, differ in many respects from the vesicles normally present in compatible pollen tubes growing through the style; they appear to resemble, in some cases, the spheres which are discharged by the compatible pollen tubes after they have reached the embryo-sac. It is considered that these observations support the current belief that the tube wall is the site of action for the incompatibility proteins and suggest that self-incompatibility is not a passive process resulting from lack of growth stimulation but an active event which leads to the destruction of the incompatible pollen tubes. The degradation mechanism involved appears similar to the one which enables the compatible pollen tube to release its contents in the degenerated synergid and presents some analogies with the lytic process taking place in virus-infected cells. The general hypothesis is presented that the particles observed in the cytoplasm of self-incompatible pollen tubes consist of a mixture of incompatibility proteins and of basic constituents of the tube wall.


Sign in / Sign up

Export Citation Format

Share Document