Ultrastructure of the flagellar roots in Chlamydomonas gametes

1984 ◽  
Vol 67 (1) ◽  
pp. 133-143
Author(s):  
R.L. Weiss

The cytoskeleton of Chlamydomonas reinhardtii gametes has been studied by electron microscopy. The microtubular system, consisting of four flagellar roots inserted into the basal apparatus, is shown to include two daughter basal bodies and two striated fibres, newly described in this report. One new fibre associates with the 3-over-1 root and is similar to its counterpart, the striated fibre of the 2-member root. These similar root fibres connect each daughter basal body to the V-shaped microtubular root pair. The other new striated fibre joins the daughter basal body to both flagellar roots and is similar to the proximal striated fibre. In mt+ gametes, the conventional root microtubules make direct contact with the doublet zone of the non-activated mating structure. During activation, doublet zone microfilaments associate with the daughter basal body and the finely striated fibre of the 3-over-1 root. These observations suggest that the cytoskeleton acts as a scaffolding for membrane extension by the mt+ mating structure microfilaments.

1964 ◽  
Vol 23 (2) ◽  
pp. 339-354 ◽  
Author(s):  
Fernando L. Renaud ◽  
Hewson Swift

The development of basal bodies and flagella in the water mold Allomyces arbusculus has been studied with the electron microscope. A small pre-existing centriole, about 160 mµ in length, was found in an inpocketing of the nuclear membrane in the vegetative hypha. Thus, formation of a basal body does not occur de novo. When the hyphal tip started to differentiate into gametangia, the centrioles were found to exist in pairs. One of the members of the pair then grew distally to more than three times its original length, whereas the other remained the same size. The larger centriole would correspond to the basal body of a future gamete. Gametogenesis was usually induced by transferring a "ripe" culture to distilled water. Shortly after this was done, a few vesicles were pinched off from the cell membrane of the gametangium and came in contact with the basal body. Apparently, they fused and formed a large primary vesicle. The flagellum then started to grow by invaginating into it. Flagellar fibers were evident from the very beginning. As the flagellum grew so did the vesicle by fusion with secondary vesicles, thus coming to form the flagellar sheath. The different stages of flagellar morphogenesis are described and the possible interrelationships with other processes are discussed.


1980 ◽  
Vol 46 (1) ◽  
pp. 149-169
Author(s):  
M. Melkonian

The slightly anisogamous gametes of Ulva lactuca exhibit a cruciate flagellar root system consisting of 4 microtubular roots (4-2-4-2 system) and an elaborate system of fibrous roots associated with the 2-stranded microtubular roots. Two fibres (32-nm striation periodicity; system I fibres) closely underlie each of the 2-stranded roots, while different fibres (150-nm striation periodicity; system II fibres) run parallel to the root microtubules, and are 150–200 nm more internally located. Female gametes have 4 system II fibres, 3 of which are combined into a compound fibre associated with one microtubular root, while the fourth fibre is associated with the opposite root. In male gametes only 2 system II fibres are present, each underlying one of the two 2-stranded roots. A special region of the plasmalemma of both gamete types about 0.5 mum away from the basal bodies and located between 2 adjacent microtubular roots is structurally specialized and acts as a mating structure in gametic fusion. The region is oval-shaped and up to I.I mum long with a maximum diameter of 0.7 mum. A continuous electron-dense boundary layer underlies the plasmalemma at the edges of the mating structure. In both gamete types the mating structure consists of a fuzzy layer of material underlying the plasmalemma and special granules (60 nm diameter) are associated with this layer on its cytoplasmic side. In addition diffuse material overlies the mating structure, especially in male gametes. The mating structure is connected to 3 different kinds of flagellar roots: the boundary layer is linked to a 2-stranded microtubular root and its associated system I fibre; the fuzzy layer of the mating structure is connected with a system II fibre; and in female gametes this is the compound system II fibre. The ultrastructural changes which occur after mixing the 2 gamete types have been followed. Mating structure activation involves contraction of system II fibres (change of striation periodicity to 100 nm), detachment of special granules from the fuzzy layer of the mating structure and their replacement by electron-transparent vesicles at the prospective cell fusion site. Furthermore, release of electron-dense contents from Golgi-derived vesicles in the anterior part of both gamete types precedes cell fusion. Cell fusion is exclusively initiated in a region delimited by the 2 mating structures. After partial dissolution the 2 plasma membranes unite within the mating structure regions. The ultrastructure of gametic fusion in Ulva lactuca is compared to that of other green algae and the significance of flagellar roots in the mating process of green algae is discussed.


1983 ◽  
Vol 63 (1) ◽  
pp. 21-41
Author(s):  
H.J. Hoops ◽  
G.L. Floyd

Immediately following embryonic cleavage, the cells of Astrephomene have four equal-sized basal bodies, two of which are connected by a striated distal fibre and two striated proximal fibres. The four microtubular rootlets, which alternate between having 3/1 and 2 members, are arranged cruciately. The two basal bodies that are connected by the striated fibres then extend into flagella, while the two accessory basal bodies are now markedly shorter. At this stage the flagellar apparatus has 180 degrees rotational symmetry and is very similar to the flagellar apparatus of the unicellular Chlamydomonas and related algae. Development proceeds with a number of concurrent events. The basal bodies begin to separate at their proximal ends and become nearly parallel. Each striated proximal fibre detaches at one end from one of the basal bodies. Each half of the flagellar apparatus, which consists of a flagellum and attached basal body, an accessory basal body, two rootlets and a striated fibre (formerly one of the proximal striated fibres), rotates about 90 degrees, the two halves rotating in opposite directions. An electron-dense strut forms near one two-membered rootlet and grows past both basal bodies. During this time a fine, fibrous component appears between newly developed spade-like structures and associated amorphous material connected to each basal body. The basal bodies continue to separate as the distal fibre stretches and finally detaches from one of them. These processes result in the loss of the 180 degree rotational symmetry present in previous stages. Although the flagella continue to separate, there is no further reorganization of the components of the flagellar apparatus. In the mature cell of Astrephomene, the two flagella are inserted separately and are parallel. The four microtubular rootlets are no longer arranged cruciately. Three of the rootlets are nearly parallel, while the fourth is approximately perpendicular to the other three. A straited fibre connects each basal body to the underside of the strut. These fibres run in the direction of the effective stroke of the flagella and might be important either in anchoring the basal bodies or in the initiation of flagellar motion. Unlike the case in the unicellular Chlamydomonas, the two flagella beat in the same direction and in parallel planes. The flagella of a given cell may or may not beat in synchrony. The combination of this type of flagellar motion and the parallel, separate flagella appears to be suited to the motion of this colonial organism.


2005 ◽  
Vol 16 (8) ◽  
pp. 3606-3619 ◽  
Author(s):  
Alexander J. Stemm-Wolf ◽  
Garry Morgan ◽  
Thomas H. Giddings ◽  
Erin A. White ◽  
Robb Marchione ◽  
...  

Centrins, small calcium binding EF-hand proteins, function in the duplication of a variety of microtubule organizing centers. These include centrioles in humans, basal bodies in green algae, and spindle pole bodies in yeast. The ciliate Tetrahymena thermophila contains at least four centrin genes as determined by sequence homology, and these have distinct localization and expression patterns. CEN1's role at the basal body was examined more closely. The Cen1 protein localizes primarily to two locations: one is the site at the base of the basal body where duplication is initiated. The other is the transition zone between the basal body and axoneme. CEN1 is an essential gene, the deletion of which results in the loss of basal bodies, which is likely due to defects in both basal body duplication and basal body maintenance. Analysis of the three other centrins indicates that two of them function at microtubule-rich structures unique to ciliates, whereas the fourth is not expressed under conditions examined in this study, although when artificially expressed it localizes to basal bodies. This study provides evidence that in addition to its previously known function in the duplication of basal bodies, centrin is also important for the integrity of these organelles.


1968 ◽  
Vol 36 (3) ◽  
pp. 603-616 ◽  
Author(s):  
Zane B. Carothers ◽  
Gerald L. Kreitner

The blepharoplast in a young, developing spermatid of Marchantia polymorpha, is a composite structure consisting of two basal bodies and a subjacent narrow band of axonemal-type tubules that we have termed the "spline." For most of its length, the spline consists of six long parallel tubules that nearly encircle the cell. The spline anterior is asymmetrically widened for about 2 µ by shorter tubules of the same kind. The lateral displacement of three long, adjacent marginal tubules by three short intervening tubules at the spline tip produces a long narrow aperture. Distally, the aperture is closed by the convergence of the displaced tubules with another trio of long tubules. Together, these form the six-membered cell-encircling portion. The expanded spline anterior has, at this stage of development, the four-layered (Vierergruppe) structure, of which the aforementioned tubules constitute the uppermost layer. The lower three strata consist of diagonal fins, elongated chambers, and fine tubules, respectively. The two flagellar bases lie close above the spline tip—one slightly anterior to the other—and diverge unequally from the spline axis. A few triplets extend proximally from the basal bodies, but do not connect with the spline. The anterior basal body is longer than the posterior one.


Author(s):  
R.L. Pinto ◽  
R.M. Woollacott

The basal body and its associated rootlet are the organelles responsible for anchoring the flagellum or cilium in the cytoplasm. Structurally, the common denominators of the basal apparatus are the basal body, a basal foot from which microtubules or microfilaments emanate, and a striated rootlet. A study of the basal apparatus from cells of the epidermis of a sponge larva was initiated to provide a comparison with similar data on adult sponges.Sexually mature colonies of Aplysillasp were collected from Keehi Lagoon Marina, Honolulu, Hawaii. Larvae were fixed in 2.5% glutaraldehyde and 0.14 M NaCl in 0.2 M Millonig’s phosphate buffer (pH 7.4). Specimens were postfixed in 1% OsO4 in 1.25% sodium bicarbonate (pH 7.2) and embedded in epoxy resin. The larva ofAplysilla sp was previously described (as Dendrilla cactus) based on live observations and SEM by Woollacott and Hadfield.


Author(s):  
Robert Hard ◽  
Gerald Rupp ◽  
Matthew L. Withiam-Leitch ◽  
Lisa Cardamone

In a coordinated field of beating cilia, the direction of the power stroke is correlated with the orientation of basal body appendages, called basal feet. In newt lung ciliated cells, adjacent basal feet are interconnected by cold-stable microtubules (basal MTs). In the present study, we investigate the hypothesis that these basal MTs stabilize ciliary distribution and alignment. To accomplish this, newt lung primary cultures were treated with the microtubule disrupting agent, Colcemid. In newt lung cultures, cilia normally disperse in a characteristic fashion as the mucociliary epithelium migrates from the tissue explant. Four arbitrary, but progressive stages of dispersion were defined and used to monitor this redistribution process. Ciliaiy beat frequency, coordination, and dispersion were assessed for 91 hrs in untreated (control) and treated cultures. When compared to controls, cilia dispersed more rapidly and ciliary coordination decreased markedly in cultures treated with Colcemid (2 mM). Correlative LM/EM was used to assess whether these effects of Colcemid were coupled to ultrastructural changes. Living cells were defined as having coordinated or uncoordinated cilia and then were processed for transmission EM.


1988 ◽  
Vol 107 (2) ◽  
pp. 635-641 ◽  
Author(s):  
J L Salisbury ◽  
A T Baron ◽  
M A Sanders

Monoclonal and polyclonal antibodies raised against algal centrin, a protein of algal striated flagellar roots, were used to characterize the occurrence and distribution of this protein in interphase and mitotic Chlamydomonas cells. Chlamydomonas centrin, as identified by Western immunoblot procedures, is a low molecular (20,000-Mr) acidic protein. Immunofluorescence and immunogold labeling demonstrates that centrin is a component of the distal fiber. In addition, centrin-based flagellar roots link the flagellar apparatus to the nucleus. Two major descending fibers extend from the basal bodies toward the nucleus; each descending fiber branches several times giving rise to 8-16 fimbria which surround and embrace the nucleus. Immunogold labeling indicates that these fimbria are juxtaposed to the outer nuclear envelope. Earlier studies have demonstrated that the centrin-based linkage between the flagellar apparatus and the nucleus is contractile, both in vitro and in living Chlamydomonas cells (Wright, R. L., J. Salisbury, and J. Jarvik. 1985. J. Cell Biol. 101:1903-1912; Salisbury, J. L., M. A. Sanders, and L. Harpst. 1987. J. Cell Biol. 105:1799-1805). Immunofluorescence studies show dramatic changes in distribution of the centrin-based system during mitosis that include a transient contraction at preprophase; division, separation, and re-extension during prophase; and a second transient contraction at the metaphase/anaphase boundary. These observations suggest a fundamental role for centrin in motile events during mitosis.


1970 ◽  
Vol 6 (3) ◽  
pp. 679-700
Author(s):  
J. WOLFE

The oral apparatus of Tetrahymena pyriformis was isolated using a non-ionic detergent to disrupt the cell membrane. The mouth consists largely of basal bodies and microfilaments. Each basal body is attached to the mouth by a basal plate which is integrated into the meshwork of microfilaments that confers upon the oral apparatus its structural integrity. Each basal body is composed of 9 triplet microtubules. Two of the 3 tubules, subfibres ‘A’ and ‘B’ are composed of filamentous rows of globules with a spacing of 4.5nm. The third tubule, subfibre ‘C’, is only one-third the length of the basal body.


1978 ◽  
Vol 76 (2) ◽  
pp. 430-438 ◽  
Author(s):  
U W Goodenough ◽  
R L Weiss

The microtubule system associated with the Chlamydomonas reinhardi flagellar apparatus is shown to differ from previous descriptions; two of the four flagellar "roots" possess only two microtubules and are associated with a finely striated fiber. In gametic cells this fiber underlies the gametic mating structure and makes contact with it. Functional interpretations are offered.


Sign in / Sign up

Export Citation Format

Share Document