Characterization of rat mammary cell types in primary culture: lectins and antisera to basement membrane and intermediate filament proteins as indicators of cellular heterogeneity

1985 ◽  
Vol 79 (1) ◽  
pp. 287-304
Author(s):  
M.J. Warburton ◽  
S.A. Ferns ◽  
C.M. Hughes ◽  
P.S. Rudland

Three morphologically distinct major cell types were observed in primary cultures obtained from the mammary parenchyma of glands from virgin rats. These cell types consisted of small cuboidal epithelial cells, larger epithelioid cells and elongated cells. We have investigated the distribution of the basement membrane proteins laminin and type IV collagen, and the intermediate filament proteins vimentin and prekeratin, in these three cell types using immunofluorescence techniques. Antisera to the basement membrane proteins stain the large epithelioid cells and the elongated cells, but do not stain the small cuboidal cells. Polyclonal antiserum to keratin stains all the small cuboidal and large epithelioid cells, but only a small subpopulation of the elongated cells. However, a monoclonal antibody to keratin, LP34, stains only the large cuboidal and a proportion of the elongated cells. Vimentin antiserum fails to stain the small cuboidal cells but stains all the large epithelioid and elongated cells. In addition, peanut lectin, which binds only to ductal lining epithelial cells in the virgin rat mammary gland in vivo after their treatment with neuraminidase, binds to the small cuboidal cells after neuraminidase treatment but not to the other cell types. However, Griffonia simplicifolia agglutinin I, which specifically stains myoepithelial cells in vivo, binds to the large epithelioid and elongated cells but not to the small cuboidal cells. These results suggest that the small cuboidal cells are related to mammary ductal epithelial cells whereas the large epithelial and elongated cells have some characteristics of myoepithelial cells.

1982 ◽  
Vol 30 (7) ◽  
pp. 667-676 ◽  
Author(s):  
M J Warburton ◽  
D Mitchell ◽  
E J Ormerod ◽  
P Rudland

Using antisera to specific proteins, the localization of the rat mammary parenchymal cells (both epithelial and myoepithelial), the basement membrane, and connective tissue components has been studied during the four physiological stages of the adult rat mammary gland, viz. resting, pregnant, lactating, and involuting glands. Antisera to myosin and prekeratin were used to localize myoepithelial cells, antisera to rat milk fat globule membrane for epithelial cells, antisera to laminin and type IV collagen to delineate the basement membrane and antisera to type I collagen and fibronectin as markers for connective tissue. In the resting, virgin mammary gland, myoepithelial cells appear to form a continuous layer around the epithelial cells and are in turn surrounded by a continuous basement membrane. Antiserum to fibronectin does not delineate the basement membrane in the resting gland. The ductal system is surrounded by connective tissue. Only the basal or myoepithelial cells in the terminal end buds of neonatal animals demonstrate cytoplasmic staining for basement membrane proteins, indicating active synthesis of these proteins during this period. In the secretory alveoli of the lactating rat, the myoepithelial cells no longer appear to form a continuous layer beneath the epithelial cells and in many areas the epithelial cells appear to be in contact with the basement membrane. The basement membrane in the lactating gland is still continuous around the ducts and alveoli. In the lactating gland, fibronectin appears to be located in the basement membrane region in addition to being a component of the stroma. During involution, the alveoli collapse, and appear to be in a state of dissolution. The basement membrane is thicker and is occasionally incomplete, as also are the basket-like myoepithelial structures. Basement membrane components can also be demonstrated throughout the collapsed alveoli.


2000 ◽  
Vol 113 (13) ◽  
pp. 2471-2483 ◽  
Author(s):  
I. Hofmann ◽  
C. Mertens ◽  
M. Brettel ◽  
V. Nimmrich ◽  
M. Schnolzer ◽  
...  

Plakophilin 1 and 2 (PKP1, PKP2) are members of the arm-repeat protein family. They are both constitutively expressed in most vertebrate cells, in two splice forms named a and b, and display a remarkable dual location: they occur in the nuclei of cells and, in epithelial cells, at the plasma membrane within the desmosomal plaques. We have shown by solid phase-binding assays that both PKP1a and PKP2a bind to intermediate filament (IF) proteins, in particular to cytokeratins (CKs) from epidermal as well as simple epithelial cells and, to some extent, to vimentin. In line with this we show that recombinant PKP1a binds strongly to IFs assembled in vitro from CKs 8/18, 5/14, vimentin or desmin and integrates them into thick (up to 120 nm in diameter) IF bundles extending for several microm. The basic amino-terminal, non-arm-repeat domain of PKP1a is necessary and sufficient for this specific interaction as shown by blot overlay and centrifugation experiments. In particular, the binding of PKP1a to IF proteins is saturable at an approximately equimolar ratio. In extracts from HaCaT cells, distinct soluble complexes containing PKP1a and desmoplakin I (DPI) have been identified by co-immunoprecipitation and sucrose density fractionation. The significance of these interactions of PKP1a with IF proteins on the one hand and desmoplakin on the other is discussed in relation to the fact that PKP1a is not bound - and does not bind - to extended IFs in vivo. We postulate that (1) effective cellular regulatory mechanisms exist that prevent plakophilins from unscheduled IF-binding, and (2) specific desmoplakin interactions with either PKP1, PKP2 or PKP3, or combinations thereof, are involved in the selective recruitment of plakophilins to the desmosomal plaques.


Development ◽  
1986 ◽  
Vol 96 (1) ◽  
pp. 229-243
Author(s):  
E. Jane Ormerod ◽  
Philip S. Rudland

Rat mammary ducts, free of buds, can alone regenerate complete mammary trees when transplanted into the interscapular fat pads of syngeneic host rats. All the main mammary cell types are identified within such outgrowths. Epithelial cells, which show the presence of milk fat globule membrane antigens and microvilli on their luminal surfaces, line the ducts. Basal cells surrounding the ducts show characteristic features of myoepithelial cells: immunoreactive actin and keratin within the cytoplasm, myofilaments, pinocytotic vesicles and hemidesmosomal attachments to the basement membrane. Cells within the end buds and lateral buds, however, show few if any cytoplasmic myofilaments and are relatively undifferentiated in appearance. Intermediate morphologies between these cells and myoepithelial cells are seen nearer the ducts. In this respect they exactly resemble the cap cells found in terminal end buds (TEBs) of normal mammary glands. Occasional epithelial cells within alveolar buds show the presence of immunoreactive casein, which is a product of secretory alveolar cells in the normal rat mammary gland. Dissected terminal end buds can regenerate similar ductal outgrowths. Thus, ductal tissue alone can generate all the major mammary cell types seen in the normal gland, including the cap cells.


2002 ◽  
Vol 115 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Thorarinn Gudjonsson ◽  
Lone Rønnov-Jessen ◽  
René Villadsen ◽  
Fritz Rank ◽  
Mina J. Bissell ◽  
...  

The signals that determine the correct polarity of breast epithelial structures in vivo are not understood. We have shown previously that luminal epithelial cells can be polarized when cultured within a reconstituted basement membrane gel. We reasoned that such cues in vivo may be given by myoepithelial cells. Accordingly, we used an assay where luminal epithelial cells are incorrectly polarized to test this hypothesis. We show that culturing human primary luminal epithelial cells within collagen-I gels leads to formation of structures with no lumina and with reverse polarity as judged by dual stainings for sialomucin, epithelial specific antigen or occludin. No basement membrane is deposited, and β4-integrin staining is negative. Addition of purified human myoepithelial cells isolated from normal glands corrects the inverse polarity, and leads to formation of double-layered acini with central lumina. Among the laminins present in the human breast basement membrane (laminin-1, -5 and -10/11), laminin-1 was unique in its ability to substitute for myoepithelial cells in polarity reversal.Myoepithelial cells were purified also from four different breast cancer sources including a biphasic cell line. Three out of four samples either totally lacked the ability to interact with luminal epithelial cells, or conveyed only correction of polarity in a fraction of acini. This behavior was directly related to the ability of the tumor myoepithelial cells to produce α-1 chain of laminin. In vivo, breast carcinomas were either negative for laminin-1 (7/12 biopsies) or showed a focal, fragmented deposition of a less intensely stained basement membrane (5/12 biopsies). Dual staining with myoepithelial markers revealed that tumor-associated myoepithelial cells were either negative or weakly positive for expression of laminin-1, establishing a strong correlation between loss of laminin-1 and breast cancer. We conclude that the double-layered breast acinus may be recapitulated in culture and that one reason for the ability of myoepithelial cells to induce polarity is because they are the only source of laminin-1 in the breast in vivo. A further conclusion is that a majority of tumor-derived/-associated myoepithelial cells are deficient in their ability to impart polarity because they have lost their ability to synthesize sufficient or functional laminin-1. These results have important implications for the role of myoepithelial cells in maintenance of polarity in normal breast and how they may function as structural tumor suppressors.


Sign in / Sign up

Export Citation Format

Share Document