Regeneration of mammary glands in vivo from isolated mammary ducts

Development ◽  
1986 ◽  
Vol 96 (1) ◽  
pp. 229-243
Author(s):  
E. Jane Ormerod ◽  
Philip S. Rudland

Rat mammary ducts, free of buds, can alone regenerate complete mammary trees when transplanted into the interscapular fat pads of syngeneic host rats. All the main mammary cell types are identified within such outgrowths. Epithelial cells, which show the presence of milk fat globule membrane antigens and microvilli on their luminal surfaces, line the ducts. Basal cells surrounding the ducts show characteristic features of myoepithelial cells: immunoreactive actin and keratin within the cytoplasm, myofilaments, pinocytotic vesicles and hemidesmosomal attachments to the basement membrane. Cells within the end buds and lateral buds, however, show few if any cytoplasmic myofilaments and are relatively undifferentiated in appearance. Intermediate morphologies between these cells and myoepithelial cells are seen nearer the ducts. In this respect they exactly resemble the cap cells found in terminal end buds (TEBs) of normal mammary glands. Occasional epithelial cells within alveolar buds show the presence of immunoreactive casein, which is a product of secretory alveolar cells in the normal rat mammary gland. Dissected terminal end buds can regenerate similar ductal outgrowths. Thus, ductal tissue alone can generate all the major mammary cell types seen in the normal gland, including the cap cells.

1986 ◽  
Vol 34 (8) ◽  
pp. 1037-1046 ◽  
Author(s):  
A Sonnenberg ◽  
H Daams ◽  
M A Van der Valk ◽  
J Hilkens ◽  
J Hilgers

The development of the mouse mammary gland was studied immunohistochemically using monoclonal antibodies against cell surface and basement membrane proteins and a polyclonal antibody against keratin. We have identified three basic cell types: basal, myoepithelial, and epithelial cells. The epithelial cells can be subdivided into three immunologically related cell types: luminal type I, luminal type II, and alveolar cells. These five cell types appear at different stages of mammary gland development and have either acquired or lost one of the antibody-defined antigens. The cytoplasmic distribution of several of these antigens varied according to the location of the cells within the mammary gland. Epithelial cells which did not line the lumen expressed antigens throughout the cytoplasm. These antigens were demonstrated on the apical site in situations where the cells lined the lumen. One antigen became increasingly basolateral as the cells became attached to the basement membrane. The basal cells synthesize laminin and deposit it at the cell base. They are present in endbuds and ducts and are probably the stem cells of the mammary gland. Transitional forms have been demonstrated which developmentally link these cells with both myoepithelial and (luminal) epithelial cells.


1985 ◽  
Vol 79 (1) ◽  
pp. 287-304
Author(s):  
M.J. Warburton ◽  
S.A. Ferns ◽  
C.M. Hughes ◽  
P.S. Rudland

Three morphologically distinct major cell types were observed in primary cultures obtained from the mammary parenchyma of glands from virgin rats. These cell types consisted of small cuboidal epithelial cells, larger epithelioid cells and elongated cells. We have investigated the distribution of the basement membrane proteins laminin and type IV collagen, and the intermediate filament proteins vimentin and prekeratin, in these three cell types using immunofluorescence techniques. Antisera to the basement membrane proteins stain the large epithelioid cells and the elongated cells, but do not stain the small cuboidal cells. Polyclonal antiserum to keratin stains all the small cuboidal and large epithelioid cells, but only a small subpopulation of the elongated cells. However, a monoclonal antibody to keratin, LP34, stains only the large cuboidal and a proportion of the elongated cells. Vimentin antiserum fails to stain the small cuboidal cells but stains all the large epithelioid and elongated cells. In addition, peanut lectin, which binds only to ductal lining epithelial cells in the virgin rat mammary gland in vivo after their treatment with neuraminidase, binds to the small cuboidal cells after neuraminidase treatment but not to the other cell types. However, Griffonia simplicifolia agglutinin I, which specifically stains myoepithelial cells in vivo, binds to the large epithelioid and elongated cells but not to the small cuboidal cells. These results suggest that the small cuboidal cells are related to mammary ductal epithelial cells whereas the large epithelial and elongated cells have some characteristics of myoepithelial cells.


1989 ◽  
Vol 37 (7) ◽  
pp. 1087-1100 ◽  
Author(s):  
P S Rudland ◽  
C M Hughes

Antiserum to epithelial membrane antigen and three monoclonal antibodies (MAb) to milk-fat globule membranes immunocytochemically stain only epithelial cells, whereas a fourth reacts also with myoepithelial cells in inter- and intralobular ducts of human breast. Staining with peanut lectin shows a gradual increase for epithelial cells, from little or no staining in ducts through variable staining in ductules to intense staining in secretory alveoli. Antisera and MAb to vimentin, smooth-muscle actin, MAb to the common acute lymphoblastic leukemia antigen and to a glycoprotein of 135 KD stain myoepithelial cells in main ducts, but this staining is reduced in inter- and intralobular ducts and ductules. MAb to epithelial-specific keratin 18 stain a minor population of ductal epithelial cells, the major population of epithelial cells in interlobular (ILD) and extralobular terminal ducts (ETD), and epithelial cells in a minority of ductules. In lactating glands most epithelial cells in ductules are stained, but the alveolar and myoepithelial cells are unstained. Keratin MAb PKK2 and LP34 strongly stain myoepithelial cells, but only a minor population of epithelial cells in main ducts. However, these MAb stain principally the epithelial cells in ILD, ETD, and a minority of ductules. In lactating glands most epithelial cells are stained in ductules, but the myoepithelial and not the alveolar cells are stained intensely in secretory lobules. It is suggested that the unusual staining pattern of cells found principally in the ILD, ETD, and some ductules may represent regions of growth and/or subpopulation(s) of cells intermediate between epithelial and myoepithelial cells.


2001 ◽  
Vol 281 (6) ◽  
pp. F1047-F1057 ◽  
Author(s):  
Marie-Louise Elkjær ◽  
Lene N. Nejsum ◽  
Veronika Gresz ◽  
Tae-Hwan Kwon ◽  
Uffe B. Jensen ◽  
...  

First published August 8, 2001; 10.1152/ajprenal.00158.2001.—The purpose of this study was to determine the cellular and subcellular localization of aquaporin-8 (AQP8) in rat kidney and other organs by RT-PCR analyses and by immunoblotting and immunohistochemistry using peptide-derived rabbit antibodies to rat AQP8. RT-PCR and Southern blotting revealed the presence of AQP8 mRNA in all kidney zones. LLC-PK1 cells transfected with a rat AQP8 construct exhibited strong labeling with the affinity-purified antibodies, whereas controls using cells transfected with the vector, but without the insert, were negative. The labeling was almost exclusively associated with intracellular vesicles. Immunoblotting of kidney membrane fractions revealed a predominant single band of 26–28 kDa. AQP8 immunoreactivity was mainly present in the cortex and outer stripe of the outer medulla. Sequential ultracentrifugation of rat kidney membrane revealed that AQP8 resides predominantly in intracellular vesicular fractions. Immunocytochemistry revealed modest labeling of proximal tubules and weak labeling of collecting ducts in cortex and medulla of rat kidney. The labeling was confined to cytoplasmic areas with no labeling of the brush border. Immunoblotting and RT-PCR/Southern blotting also revealed the presence of AQP8 protein and mRNA in rat liver, testis, epididymis, duodenum, jejunum, colon, and bronchi/trachea. Consistent with this, immunohistochemistry revealed AQP8 labeling in the hepatocytes and spematogenic cells in testis and in the basal cells in ductus epididymis, trachea, and bronchial epithelia. Moreover, AQP8 labeling was observed in the myoepithelial cells in salivary, bronchial, and tracheal glands with no labeling of acini or ductal epithelial cells. AQP8 is also present in the surface epithelial cells in duodenum, jejunum, and colon. In conclusion, AQP8 is expressed at low levels in rat kidney proximal tubules and collecting ducts, and it is present in distinct cell types in liver, testis, epididymis, duodenum, jejunum, colon, trachea, and principal bronchi as well as in multiple glands, including salivary glands.


1989 ◽  
Vol 37 (12) ◽  
pp. 1787-1797 ◽  
Author(s):  
B A Schulte ◽  
J C Adams

Cells containing immunoreactive vimentin-type intermediate filaments (IF) were identified in paraffin sections and whole-mount preparations of the gerbil inner ear. Most connective tissue cells showed positive immunostaining, although one unusual class of stromal cell lacked vimentin. Several different types of epithelial cells contained high levels of vimentin. In the cochlea, Deiters' cells, inner phalangeal cells, Boettcher's cells, some outer sulcus cells, and the intermediate cells of the stria vascularis showed strong immunoreactivity. Strial basal cells exhibited weaker and less consistent staining. Neither inner nor outer hair cells were stained. In the vestibular system, hair cells with a morphology and location more characteristic of type I than of type II cells showed strong immunostaining for vimentin. Supporting cells in vestibular neurosensory epithelium stained with less intensity. These results were surprising because epithelial cells in vivo only rarely express vimentin-type IF. Although the functional significance of vimentin remains to be established, its presence in some but not other highly specialized cell types provides an excellent marker for investigating the lineage and morphogenesis of the complex inner ear tissues.


2018 ◽  
Vol 373 (1759) ◽  
pp. 20170318 ◽  
Author(s):  
Jacob M. Jaslove ◽  
Celeste M. Nelson

Smooth muscle is increasingly recognized as a key mechanical sculptor of epithelia during embryonic development. Smooth muscle is a mesenchymal tissue that surrounds the epithelia of organs including the gut, blood vessels, lungs, bladder, ureter, uterus, oviduct and epididymis. Smooth muscle is stiffer than its adjacent epithelium and often serves its morphogenetic function by physically constraining the growth of a proliferating epithelial layer. This constraint leads to mechanical instabilities and epithelial morphogenesis through buckling. Smooth muscle stiffness alone, without smooth muscle cell shortening, seems to be sufficient to drive epithelial morphogenesis. Fully understanding the development of organs that use smooth muscle stiffness as a driver of morphogenesis requires investigating how smooth muscle develops, a key aspect of which is distinguishing smooth muscle-like tissues from one another in vivo and in culture. This necessitates a comprehensive appreciation of the genetic, anatomical and functional markers that are used to distinguish the different subtypes of smooth muscle (for example, vascular versus visceral) from similar cell types (including myofibroblasts and myoepithelial cells). Here, we review how smooth muscle acts as a mechanical driver of morphogenesis and discuss ways of identifying smooth muscle, which is critical for understanding these morphogenetic events. This article is part of the Theo Murphy meeting issue ‘Mechanics of Development’.


2001 ◽  
Vol 280 (3) ◽  
pp. L390-L399 ◽  
Author(s):  
Jane K. Mellott ◽  
Harry S. Nick ◽  
Michael F. Waters ◽  
Timothy R. Billiar ◽  
David A. Geller ◽  
...  

Transcription of the human inducible nitric oxide synthase ( iNOS) gene is regulated by inflammatory cytokines in a tissue-specific manner. To determine whether differences in cytokine-induced mRNA levels between pulmonary epithelial cells (A549) and hepatic biliary epithelial cells (AKN-1) result from different protein or DNA regulatory mechanisms, we identified cytokine-induced changes in DNase I-hypersensitive (HS) sites in 13 kb of the iNOS 5′-flanking region. Data showed both constitutive and inducible HS sites in an overlapping yet cell type-specific pattern. Using in vivo footprinting and ligation-mediated PCR to detect potential DNA or protein interactions, we examined one promoter region near −5 kb containing both constitutive and cytokine-induced HS sites. In both cell types, three in vivo footprints were present in both control and cytokine-treated cells, and each mapped within a constitutive HS site. The remaining footprint appeared only in response to cytokine treatment and mapped to an inducible HS site. These studies, performed on chromatin in situ, identify a portion of the molecular mechanisms regulating transcription of the human iNOS gene in both lung- and liver-derived epithelial cells.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 942
Author(s):  
Magalí G. Bialer ◽  
Gabriela Sycz ◽  
Florencia Muñoz González ◽  
Mariana C. Ferrero ◽  
Pablo C. Baldi ◽  
...  

A central aspect of Brucella pathogenicity is its ability to invade, survive, and replicate in diverse phagocytic and non-phagocytic cell types, leading to chronic infections and chronic inflammatory phenomena. Adhesion to the target cell is a critical first step in the invasion process. Several Brucella adhesins have been shown to mediate adhesion to cells, extracellular matrix components (ECM), or both. These include the sialic acid-binding proteins SP29 and SP41 (binding to erythrocytes and epithelial cells, respectively), the BigA and BigB proteins that contain an Ig-like domain (binding to cell adhesion molecules in epithelial cells), the monomeric autotransporters BmaA, BmaB, and BmaC (binding to ECM components, epithelial cells, osteoblasts, synoviocytes, and trophoblasts), the trimeric autotransporters BtaE and BtaF (binding to ECM components and epithelial cells) and Bp26 (binding to ECM components). An in vivo role has also been shown for the trimeric autotransporters, as deletion mutants display decreased colonization after oral and/or respiratory infection in mice, and it has also been suggested for BigA and BigB. Several adhesins have shown unipolar localization, suggesting that Brucella would express an adhesive pole. Adhesin-based vaccines may be useful to prevent brucellosis, as intranasal immunization in mice with BtaF conferred high levels of protection against oral challenge with B. suis.


1990 ◽  
Vol 38 (11) ◽  
pp. 1633-1645 ◽  
Author(s):  
C M Hughes ◽  
P S Rudland

Peroxidase-conjugated Griffonia simplicifolia-1 (GS-1) and pokeweed mitogen (PWM) histochemically stain only the myoepithelial cells and not the epithelial or fibroblastic cells of rat mammary glands preserved in methacarn or glutaraldehyde and embedded in paraffin. This pattern of staining occurs in other rat exocrine glands except the pancreas, but is the reverse of that seen in most lining epithelium. The histochemical binding of GS-1 and PWM to myoepithelial cells is inhibited specifically by D-galactose and by polymers of N-acetylglucosamine, respectively. GS-1 and its subcomponent, GS-1-B4, also bind to extracellular structures similar to those stained by anti-laminin serum. At the ultrastructural level, both conjugated GS-1 and PWM bind to the plasma membrane of the myoepithelial cells, as well as to the adjacent basement membrane. Non-metastasizing rat mammary tumors produced by dimethylbenz[a]anthracene, by derivative epithelial stem-cell lines, and by a transplantable tumor all contain more elongated myoepithelium-like cells as well as cuboidal epithelium-like cells; both cell types are neoplastic. The more elongated myoepithelium-like cells are stained by GS-1 and PWM, whereas the cuboidal epithelium-like cells are unstained. Moderately and strongly metastatic rat mammary tumors produced by epithelial cell lines and by transplantable tumors, respectively, contain no such neoplastic cells that bind either lectin. We suggest that the carbohydrate receptors for GS-1 and PWM are consistent markers for the presence of the myoepithelial cell in normal and tumorous rat mammary glands.


1991 ◽  
Vol 39 (9) ◽  
pp. 1257-1266 ◽  
Author(s):  
P S Rudland

Implantation of excised bud-free ductal fragments (DUCTS), terminal end buds (TEBs), or alveolar buds (ABs) from virgin mammary glands of Wistar-Furth rats into interscapular fat pads of syngeneic female rats produces, after 16 weeks, complete ductal outgrowths including TEBs and ABs. Treatment of the recipient rats with perphenazine for 1 day or mating them after 12 weeks and then isolating the resultant outgrowths after 16 weeks produces significantly larger outgrowths than those from untreated hosts. The outgrowths consist of distended ducts and lobules or distended ducts and alveoli, respectively. Histochemical and immunocytochemical staining of the outgrowths with reagents that depict epithelial, myoepithelial, and lactating alveolar cells (peanut lectin alone, monoclonal and polyclonal antibodies to rat caseins) indicate similar cell compositions and arrangements for all outgrowths irrespective of their source; these are also similar to the mammary glands of the perphenazine-stimulated or lactating hosts. There is one major difference: the degree of staining of peanut lectin alone and the anti-caseins is greater for outgrowths produced by the ABs and TEBs than for those produced by the DUCTs. DUCT implants left for 1 year after cessation of lactation of the hosts are still stained appreciably by peanut lectin alone and by the anti-caseins, particularly the luminal secretions. Therefore, the complete morphogenetic and cell differentiating ability for generating mammary glands is present in bud-free ducts, but this ability can be enhanced in TEBs/ABs or abnormally expressed at ectopic sites.


Sign in / Sign up

Export Citation Format

Share Document