scholarly journals Homotypic pair formation during conjugation in Tetrahymena thermophila

1986 ◽  
Vol 82 (1) ◽  
pp. 223-234
Author(s):  
A. Kitamura ◽  
T. Sugai ◽  
Y. Kitamura

In the ciliate Tetrahymena thermophila, conjugation has been believed to occur only between cells of different mating types. We found the formation of homotypic pairs during normal conjugation by using micronuclear morphological markers. Homotypic pairs formed preferentially during the first 10 min following the first pair formation and comprised about half of the pairs. These results suggest the involvement of mating-type non-specific adhesion of cells in the initial step of conjugation. Homotypic pairs apparently persist for at least 30 min and then separate into single cells. Homotypic pairs are also formed when conjugant pairs re-form after mechanical separation of heterotypic pairs. Five kinds of glycosidases, three kinds of proteases and phospholipase C showed no effect on either the formation of homotypic pairs of their separation. The relation between the mating-type substances and the molecules responsible for mating-type non-specific adhesion of cells is discussed.

Genetics ◽  
1983 ◽  
Vol 104 (1) ◽  
pp. 41-62
Author(s):  
Yuuji Tsukii ◽  
Koichi Hiwatashi

ABSTRACT In mating interactions in Paramecium caudatum, initial mating agglutination is strictly mating-type specific, but subsequent conjugating pair formation is not mating-type specific. Using this nonspecificity of pair formation, intersyngenic (intersibling species) pairs were induced by mixing four mating types of two different syngens. To distinguish intersyngenic pairs from intrasyngenic ones, the behavioral marker CNR (Takahashi 1979) was mainly used. Clones of intersyngenic hybrids showed high fertility and thus made feasible a genetic analysis of syngenic specificity of mating type. The syngenic specificities of E (even) mating types were found to be controlled by co-dominant multiple alleles at the Mt locus, and those of O (odd) mating types by interactions of co-dominant multiple alleles at two loci, MA and MB. Clones of heterozygotes express dual mating types. Mt is epistatic to MA and MB, and thus O mating types can be expressed only in the recessive homozygote (mt/mt) at the Mt locus. In addition, at least one allele each at the MA and MB loci must have a common syngen specificity for the expression of O types. Thus, when MA is homozygous for one syngen and MB is homozygous for another syngen, no mating type is expressed.


1982 ◽  
Vol 2 (6) ◽  
pp. 633-637 ◽  
Author(s):  
Minna B. Rotheim ◽  
Bruce Love

We examined the effect of inhibitors of receptor-mediated endocytosis on cell pair formation during conjugation inTetrahymena thermophila.Dansylcadaverine (20 μM), methylamine (20 mM), and bacitracin (2 mg/ml) prevented cell pair formation even when added poststarvation, after mixing of cells of opposite mating types (during the prepairing interaction). Chloroquine (10 and 25 μM) did not inhibit cell pair formation, leading to the conclusion that inhibition by dansylcadaverine, methylamine, and bacitracin is not due to an alkalinization of the lysosome. These results did not allow us to define the time in the prepairing interaction at which inhibition occurs, nor to identify the cellular components involved, but they did support the hypothesis that an endocytotic event(s) plays a role in the cell contact-mediated recognition which occurs during the prepairing interaction.


1985 ◽  
Vol 46 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Rinji Akada

SUMMARYRelationships between mating type genes and mating-inducing factors (gamones) were investigated in the ciliate Euplotes patella syngen 2. Ten mating types were distinguished, and genetic data indicated that the ten mating types were determined by four codominant alleles in possible combinations of two of them. There were six heterozygous types (mt1/mt2, mt3/mt4, etc.) and four homozygous types (mt1/mt1, mt2/mt2, etc.). Conjugation-conditioned fluid (CCF) obtained from a mixture of cells of homozygous types could induce homotypic pair formation in cells of all mating types except for a particular type. Genetic data of cell-CCF combination experiments suggest that each mating type allele controls the production of a specific gamone which induces pair formation in cells which do not produce the same gamone. Gamones and their hypothetical receptors are discussed.


1982 ◽  
Vol 2 (6) ◽  
pp. 633-637
Author(s):  
Minna B. Rotheim ◽  
Bruce Love

We examined the effect of inhibitors of receptor-mediated endocytosis on cell pair formation during conjugation in Tetrahymena thermophila. Dansylcadaverine (20 μM), methylamine (20 mM), and bacitracin (2 mg/ml) prevented cell pair formation even when added poststarvation, after mixing of cells of opposite mating types (during the prepairing interaction). Chloroquine (10 and 25 μM) did not inhibit cell pair formation, leading to the conclusion that inhibition by dansylcadaverine, methylamine, and bacitracin is not due to an alkalinization of the lysosome. These results did not allow us to define the time in the prepairing interaction at which inhibition occurs, nor to identify the cellular components involved, but they did support the hypothesis that an endocytotic event(s) plays a role in the cell contact-mediated recognition which occurs during the prepairing interaction.


2020 ◽  
Vol 12 (12) ◽  
pp. 2328-2343
Author(s):  
Guangying Wang ◽  
Kai Chen ◽  
Jing Zhang ◽  
Shanjun Deng ◽  
Jie Xiong ◽  
...  

Abstract Sex offers advantages even in primarily asexual species. Some ciliates appear to utilize such reproductive strategy with many mating types. However, the factors determining the composition of mating types in the unicellular ciliate Tetrahymena thermophila are poorly understood, and this is further complicated by non-Mendelian determination of mating type in the offspring. We therefore developed a novel population genetics model to predict how various factors influence the dynamics of mating type composition, including natural selection. The model predicted either the coexistence of all seven mating types or fixation of a single mating type in a population, depending on parameter combinations, irrespective of natural selection. To understand what factor(s) may be more influential and to test the validity of theoretical prediction, five replicate populations were maintained in laboratory such that several factors could be controlled or measured. Whole-genome sequencing was used to identify newly arising mutations and determine mating type composition. Strikingly, all populations were found to be driven by strong selection on newly arising beneficial mutations to fixation of their carrying mating types, and the trajectories of speed to fixation agreed well with our theoretical predictions. This study illustrates the evolutionary strategies that T. thermophila can utilize to optimize population fitness.


2020 ◽  
Vol 12 (4) ◽  
pp. 243-258 ◽  
Author(s):  
Wen-Juan Ma ◽  
Fantin Carpentier ◽  
Tatiana Giraud ◽  
Michael E Hood

Abstract Degenerative mutations in non-recombining regions, such as in sex chromosomes, may lead to differential expression between alleles if mutations occur stochastically in one or the other allele. Reduced allelic expression due to degeneration has indeed been suggested to occur in various sex-chromosome systems. However, whether an association occurs between specific signatures of degeneration and differential expression between alleles has not been extensively tested, and sexual antagonism can also cause differential expression on sex chromosomes. The anther-smut fungus Microbotryum lychnidis-dioicae is ideal for testing associations between specific degenerative signatures and differential expression because 1) there are multiple evolutionary strata on the mating-type chromosomes, reflecting successive recombination suppression linked to mating-type loci; 2) separate haploid cultures of opposite mating types help identify differential expression between alleles; and 3) there is no sexual antagonism as a confounding factor accounting for differential expression. We found that differentially expressed genes were enriched in the four oldest evolutionary strata compared with other genomic compartments, and that, within compartments, several signatures of sequence degeneration were greater for differentially expressed than non-differentially expressed genes. Two particular degenerative signatures were significantly associated with lower expression levels within differentially expressed allele pairs: upstream insertion of transposable elements and mutations truncating the protein length. Other degenerative mutations associated with differential expression included nonsynonymous substitutions and altered intron or GC content. The association between differential expression and allele degeneration is relevant for a broad range of taxa where mating compatibility or sex is determined by genes located in large regions where recombination is suppressed.


Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1437-1444
Author(s):  
C Ian Robertson ◽  
Kirk A Bartholomew ◽  
Charles P Novotny ◽  
Robert C Ullrich

The Aα locus is one of four master regulatory loci that determine mating type and regulate sexual development in Schizophyllum commune. We have made a plasmid containing a URA1 gene disruption of the Aα Y1 gene. Y1 is the sole Aα gene in Aα1 strains. We used the plasmid construction to produce an Aα null (i.e., AαΔ) strain by replacing the genomic Y1 gene with URA1 in an Aα1 strain. To characterize the role of the Aα genes in the regulation of sexual development, we transformed various Aα Y and Z alleles into AαΔ strains and examined the acquired mating types and mating abilities of the transformants. These experiments demonstrate that the Aα Y gene is not essential for fungal viability and growth, that a solitary Z Aα mating-type gene does not itself activate development, that Aβ proteins are sufficient to activate the A developmental pathway in the absence of Aα proteins and confirm that Y and Z genes are the sole determinants of Aα mating type. The data from these experiments support and refine our model of the regulation of A-pathway events by Y and Z proteins.


2017 ◽  
Vol 142 (4) ◽  
pp. 260-264
Author(s):  
Ping Li ◽  
Dong Liu ◽  
Min Guo ◽  
Yuemin Pan ◽  
Fangxin Chen ◽  
...  

Sexual reproduction in the plant parasite Phytophthora capsici Leonian requires the interaction of two distinct mating types, A1 and A2. Co-occurrence of these mating types can enhance the genetic diversity of P. capsici and alter its virulence or resistance characteristics. Using an intersimple sequence repeat (ISSR) screen of microsatellite diversity, we identified, cloned, and sequenced a novel 1121-base pair (bp) fragment specific to the A1 mating type of P. capsici. Primers Pcap-1 and Pcap-2 were designed from this DNA fragment to specifically detect the A1 mating type. Polymerase chain reaction (PCR) using these primers amplified an expected 997-bp fragment from known A1 mating types, but yielded a 508-bp fragment from known A2 mating types. This PCR-based assay could be adapted to accurately and rapidly detect the co-occurrence of A1 and A2 P. capsici mating types from field material.


1993 ◽  
Vol 13 (3) ◽  
pp. 1962-1970
Author(s):  
T D Moore ◽  
J C Edman

The opportunistic fungal pathogen Cryptococcus neoformans has two mating types, MATa and MAT alpha. The MAT alpha strains are more virulent. Mating of opposite mating type haploid yeast cells results in the production of a filamentous hyphal phase. The MAT alpha locus has been isolated in this study in order to identify the genetic differences between mating types and their contribution to virulence. A 138-bp fragment of MAT alpha-specific DNA which cosegregates with alpha-mating type was isolated by using a difference cloning method. Overlapping phage and cosmid clones spanning the entire MAT alpha locus were isolated by using this MAT alpha-specific fragment as a probe. Mapping of these clones physically defined the MAT alpha locus to a 35- to 45-kb region which is present only in MAT alpha strains. Transformation studies with fragments of the MAT alpha locus identified a 2.1-kb XbaI-HindIII fragment that directs starvation-induced filament formation in MATa cells but not in MAT alpha cells. This 2.1-kb fragment contains a gene, MF alpha, with a small open reading frame encoding a pheromone precursor similar to the lipoprotein mating factors found in Saccharomyces cerevisiae, Ustilago maydis, and Schizosaccharomyces pombe. The ability of the MATa cells to express, process, and secrete the MAT alpha pheromone in response to starvation suggests similar mechanisms for these processes in both cell types. These results also suggest that the production of pheromone is under a type of nutritional control shared by the two cell types.


1993 ◽  
Vol 104 (2) ◽  
pp. 227-230
Author(s):  
U. Kues ◽  
L.A. Casselton

Having multiple mating types greatly improves the chances of meeting a compatible mating partner, particularly in an organism like the mushroom that has no sexual differentiation and no mechanism for signalling to a likely mate. Having several thousands of mating types, as some mushrooms do, is, however, remarkable - and even more remarkable is the fact that individuals only recognise that they have met a compatible mate after their cells have fused. How are such large numbers of mating types generated and what is the nature of the intracellular interaction that distinguishes self from non- self? Answers to these fascinating questions come from cloning some of the mating type genes of the ink cap mushroom Coprinus cinereus. A successful mating in Coprinus triggers a major switch in cell type, the conversion of a sterile mycelium with uninucleate cells (monokaryon) to a fertile mycelium with binucleate cells (dikaryon) which differentiates the characteristic fruit bodies. The mating type genes that regulate this developmental switch map to two multiallelic loci designated A and B and these must both carry different alleles for full mating compatibility. A and B independently regulate different steps in the developmental switch, making it possible to study just one component of the system and work in our laboratory has concentrated on understanding the structure and function of the A genes. It is estimated that some 160 different A mating types exist in nature, any two of which can together trigger the A-regulated part of sexual development. The first clue to how such large numbers are generated came from classical genetic analysis, which identified two functionally redundant A loci, (alpha) and beta. Functional redundancy is, indeed, the key to multiple A mating types and, as seen in Fig.1, molecular cloning has identified many more genes than was possible by recombination analysis.


Sign in / Sign up

Export Citation Format

Share Document