Cellulose microfibril orientation in Oocystis solitaria: proof that microtubules control the alignment of the terminal complexes

1986 ◽  
Vol 83 (1) ◽  
pp. 223-234
Author(s):  
H. Quader

In the green alga Oocystis solitaria microtubules control the regular deposition of cellulose microfibrils. Although it has frequently been suggested that the influence of the cortical microtubules is mediated through the alignment of structures in the plasma membrane, e.g. the cellulose-synthesizing enzymes, experimental proof is lacking. In Oocystis the putative cellulose-synthesizing units, the so-called terminal complexes, can be visualized following freeze-fracture. With respect to the synthesis of a given layer of microfibrils two distinct situations are observable: terminal complex doublets occur before the start of cellulose formation, but are subsequently separated into single terminal complexes by pressure exerted by the crystallizing microfibrils. In order to investigate the effect of anti-microtubular substances on the orientation of the terminal complexes, the state of cellulose deposition at the time of drug application was marked by short (15–30 min) treatment with Congo Red, which causes a morphological change in the terminal complexes. The characteristic alignment of the terminal complexes, both doublets and fragmented single ones, is severely disturbed in cells treated with the herbicide amiprophosmethyl, which is known to interfere with the action of microtubules. The results provide strong evidence that microtubules control the alignment of the putative cellulose-forming units in Oocystis. The observed pattern of interference indicates that the microtubules most probably achieve their control by imposing fluidity channels on the membrane and not via direct links with the terminal complexes.

1996 ◽  
Vol 109 (13) ◽  
pp. 3079-3087 ◽  
Author(s):  
M.J. Grimson ◽  
C.H. Haigler ◽  
R.L. Blanton

Prestalk cells of Dictyostelium discoideum contribute cellulose to two distinct structures, the stalk tube and the stalk cell wall, during culmination. This paper demonstrates by freeze fracture electron microscopy that two distinct types of intramembrane particle aggregates, which can be characterized as cellulose microfibril terminal complexes, occur in the plasma membranes of cells synthesizing these different forms of cellulose. The same terminal complexes were observed in situ in developing culminants and in vitro in monolayer cells induced to synthesize the two types of cellulose. We propose that cessation of cell motility is associated with a change in packing and intramembrane mobility of the particle aggregates, which cause a change in the nature of the cellulose synthesized. The terminal complexes are compared to those described in other organisms and related to the previous hypothesis of two modes of cellulose synthesis in Dictyostelium.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 629 ◽  
Author(s):  
Hiroaki Kuki ◽  
Ryusuke Yokoyama ◽  
Takeshi Kuroha ◽  
Kazuhiko Nishitani

The notion that xyloglucans (XG) play a pivotal role in tethering cellulose microfibrils in the primary cell wall of plants can be traced back to the first molecular model of the cell wall proposed in 1973, which was reinforced in the 1990s by the identification of Xyloglucan Endotransglucosylase/Hydrolase (XTH) enzymes that cleave and reconnect xyloglucan crosslinks in the cell wall. However, this tethered network model has been seriously challenged since 2008 by the identification of the Arabidopsis thaliana xyloglucan-deficient mutant (xxt1 xxt2), which exhibits functional cell walls. Thus, the molecular mechanism underlying the physical integration of cellulose microfibrils into the cell wall remains controversial. To resolve this dilemma, we investigated the cell wall regeneration process using mesophyll protoplasts derived from xxt1 xxt2 mutant leaves. Imaging analysis revealed only a slight difference in the structure of cellulose microfibril network between xxt1 xxt2 and wild-type (WT) protoplasts. Additionally, exogenous xyloglucan application did not alter the cellulose deposition patterns or mechanical stability of xxt1 xxt2 mutant protoplasts. These results indicate that xyloglucan is not essential for the initial assembly of the cellulose network, and the cellulose network formed in the absence of xyloglucan provides sufficient tensile strength to the primary cell wall regenerated from protoplasts.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 90
Author(s):  
Tobias ◽  
Spokevicius ◽  
McFarlane ◽  
Bossinger

Recent advances in our understanding of the molecular control of secondary cell wall (SCW) formation have shed light on molecular mechanisms that underpin domestication traits related to wood formation. One such trait is the cellulose microfibril angle (MFA), an important wood quality determinant that varies along tree developmental phases and in response to gravitational stimulus. The cytoskeleton, mainly composed of microtubules and actin filaments, collectively contribute to plant growth and development by participating in several cellular processes, including cellulose deposition. Studies in Arabidopsis have significantly aided our understanding of the roles of microtubules in xylem cell development during which correct SCW deposition and patterning are essential to provide structural support and allow for water transport. In contrast, studies relating to SCW formation in xylary elements performed in woody trees remain elusive. In combination, the data reviewed here suggest that the cytoskeleton plays important roles in determining the exact sites of cellulose deposition, overall SCW patterning and more specifically, the alignment and orientation of cellulose microfibrils. By relating the reviewed evidence to the process of wood formation, we present a model of microtubule participation in determining MFA in woody trees forming reaction wood (RW).


Holzforschung ◽  
2009 ◽  
Vol 63 (2) ◽  
Author(s):  
Cordt Zollfrank ◽  
Jörg Fromm

Abstract The pyrolytic conversion of pine wood at mild temperatures between 200°C and 300°C was investigated by transmission electron microscopy (TEM). Based on TEM imaging and image analysis, a novel method was developed for determining the local orientation of the cellulose microfibrils in the secondary wall S2 which gives a measure for the progression of pyrolytic conversion of the cell wall. Elemental composition of pyrolysed specimens was determined up to 600°C. TEM imaging together with the evaluation of the elemental composition shows that first the polyoses are degraded, while the cellulose microfibril orientation is still visible up to 225°C. The cellulose microfibrils could not be observed at temperatures higher than 250°C, while lignin containing compound middle lamella (CML) was still visible. After a gradual decrease of the CML up to 275°C, the cell wall became entirely isotropic beginning at 300°C. Based on the presented results, we propose an early degradation of the supramolecular structure of the cell wall.


2020 ◽  
Vol 71 (10) ◽  
pp. 2956-2969 ◽  
Author(s):  
Ran Zhang ◽  
Huizhen Hu ◽  
Youmei Wang ◽  
Zhen Hu ◽  
Shuangfeng Ren ◽  
...  

Abstract UDP-glucose epimerases (UGEs) are essential enzymes for catalysing the conversion of UDP-glucose (UDP-Glc) into UDP-galactose (UDP-Gal). Although UDP-Gal has been well studied as the substrate for the biosynthesis of carbohydrates, glycolipids, and glycoproteins, much remains unknown about the biological function of UGEs in plants. In this study, we selected a novel rice fragile culm 24 (Osfc24) mutant and identified it as a nonsense mutation of the FC24/OsUGE2 gene. The Osfc24 mutant shows a brittleness phenotype with significantly altered cell wall composition and disrupted orientation of the cellulose microfibrils. We found significantly reduced accumulation of arabinogalactan proteins in the cell walls of the mutant, which may consequently affect plant growth and cell wall deposition, and be responsible for the altered cellulose microfibril orientation. The mutant exhibits dwarfism and paler leaves with significantly decreased contents of galactolipids and chlorophyll, resulting in defects in plant photosynthesis. Based on our results, we propose a model for how OsUGE2 participates in two distinct metabolic pathways to co-modulate cellulose biosynthesis and cell wall assembly by dynamically providing UDP-Gal and UDP-Glc substrates.


1980 ◽  
Vol 84 (2) ◽  
pp. 315-326 ◽  
Author(s):  
S C Mueller ◽  
R M Brown

Freeze-fracture of rapidly frozen, untreated plant cells reveals terminal complexes on E-fracture faces and intramembrane particle rosettes on P-fracture faces. Terminal complexes and rosettes are associated with the ends of individual microfibril impressions on the plasma membrane. In addition, terminal complexes and rosettes are associated with the impressions of new orientations of microfibrils. These structures are sparse within pit fields where few microfibril impressions are observed, but are abundant over adjacent impressions of microfibrils. It is proposed that intramembrane rosettes function in association with terminal complexes to synthesize microfibrils. The presence of a cellulosic microfibril system in Zea mays root segments is confirmed by degradation experiments with Trichoderma cellulase.


2007 ◽  
Vol 51 (4) ◽  
pp. 717-726 ◽  
Author(s):  
Antanas V. Spokevicius ◽  
Simon G. Southerton ◽  
Colleen P. MacMillan ◽  
Deyou Qiu ◽  
Siming Gan ◽  
...  

2021 ◽  
Author(s):  
Tanîa M. Shiga ◽  
Haibing Yang ◽  
Bryan W. Penning ◽  
Anna T. Olek ◽  
Maureen C. McCann ◽  
...  

Abstract A modified TEMPO-catalyzed oxidation of the solvent-exposed glucosyl units of cellulose to uronic acids, followed by carboxyl reduction with NaBD 4 to 6-deutero- and 6,6-dideuteroglucosyl units, provided a robust method for determining relative proportions of disordered amorphous, ordered surface chains, and anhydrous core-crystalline residues of cellulose microfibrils inaccessible to TEMPO. Both glucosyl residues of cellobiose units, digested from amorphous chains of cellulose with a combination of cellulase and cellobiohydrolase, were deuterated, whereas those from anhydrous chains were undeuterated. By contrast, solvent-exposed and anhydrous residues alternate in surface chains, so only one of the two residues of cellobiosyl units was labeled. Although current estimates indicate that each cellulose microfibril comprises only 18 to 24 (1 , 4)- b eta-D-glucan chains, we show here that microfibrils of walls of Arabidopsis leaves and maize coleoptiles, and those of secondary wall cellulose of cotton fibers and poplar wood, bundle into much larger macrofibrils, with 67 to 86% of the glucan chains in the anhydrous domain. These results indicate extensive bundling of microfibrils into macrofibrils occurs during both primary and secondary wall formation. We discuss how, beyond lignin, the degree of bundling into macrofibrils contributes an additional recalcitrance factor to lignocellulosic biomass for enzymatic or chemical catalytic conversion to biofuel substrates.


PROTOPLASMA ◽  
1993 ◽  
Vol 175 (3-4) ◽  
pp. 102-111 ◽  
Author(s):  
A. M. C. Wolters-Arts ◽  
T. van Amstel ◽  
J. Derksen

2018 ◽  
Vol 50 (8) ◽  
pp. 697-709 ◽  
Author(s):  
Kalyanee Sirisinha ◽  
Walailuck Kamphunthong ◽  
Kornrawee Srisawat

This article relates to the melt-processing and properties of polylactic acid (PLA) reinforced with cellulose microfibrils (CMFs). The CMFs with diameters of 20–80 nm and lengths in the order of microns were isolated from wood sawdust. The purpose of the present study was to find a simple method to overcome the problems associated with feeding and aggregation of the nanoscale fibers in PLA melt. Two fiber carriers were compared, that is, natural rubber (NR) latex and polyethylene glycol (PEG) with a molecular weight of 4000 g mol−1. The results showed that with the aid of carrier, CMFs were successfully dispersed in the composites, enabling the strong reinforcing action of the fibrils to be realized. The type of carriers used had significant effects on the final properties of the PLA composites. Dynamic mechanical analysis results showed an eightfold improvement in modulus at elevated temperature (90°C) for the composite with 3 wt% CMFs using PEG as carrier. This enhancement was attributed to the combined effects of fiber reinforcement and cold crystallization induced in the PLA. With NR latex as carrier, the composite of high tensile strength was achieved by introducing the epoxidized rubber (ENR) in a ratio of 2:3 (ENR:NR) as a compatibilizer to improve adhesion between phases in the composites.


Sign in / Sign up

Export Citation Format

Share Document