The effects of tunicamycin, mevinolin and mevalonic acid on HMG-CoA reductase activity and nuclear division in the myxomycete Physarum polycephalum

1989 ◽  
Vol 92 (3) ◽  
pp. 341-344
Author(s):  
W. Engstrom ◽  
O. Larsson ◽  
W. Sachsenmaier

The effects of two inhibitors of 3-hydroxy 3-methyl glutaryl-coenzyme A reductase (tunicamycin and mevinolin) on nuclear division in the myxomycete Physarum polycephalum were examined. Tunicamycin exerted a minor effect on division in synchronized cultures, whereas mevinolin delayed the second, third and fourth nuclear divisions with increasing efficiency. Mevinolin also appeared to be the more potent inhibitor of HMG-CoA reductase, which catalyses the rate-limiting step in the biosynthesis of cholesterol and other isoprene derivatives. These effects of mevinolin could be partially reversed by the addition of mevalonate, suggesting that mevinolin exerts its inhibitory effects on Physarum nuclear division by decreasing the activity of HMG-CoA reductase.

1986 ◽  
Vol 251 (4) ◽  
pp. E457-E463
Author(s):  
F. M. Wittmaack ◽  
J. A. Holt ◽  
J. R. Schreiber

To learn whether either reduced de novo cholesterol synthesis and/or altered cholesteryl ester metabolism is responsible for the deficient progestin production induced by estrogen withdrawal from pseudopregnant rabbits, we measured the luteal activity of three enzymes: 1) 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (the rate-limiting step in de novo cholesterol synthesis), 2) cholesteryl ester hydrolase, and 3) acyl coenzyme A:cholesterol acyltransferase (ACAT) in estrogen-stimulated and estrogen-deprived rabbits. The only change in the activity of these enzymes and of the enzyme NADPH-cytochrome c reductase (a microsomal marker enzyme) after estrogen capsule removal for 12 or 24 h was a 30% decrease in HMG-CoA reductase activity after 24 h. The decrease in HMG-CoA reductase activity was not accompanied by a detectable change in either the content or localization of cellular free cholesterol. Previous data from our laboratory have demonstrated that 24 h of estrogen deprivation has no effect on inner mitochondrial membrane P-450 side-chain cleavage activity (a rate-limiting step in the conversion of cholesterol to steroid hormones). These data, and our earlier finding that estrogen deprivation leads to accumulation of cholesteryl ester in the luteal cells, indicate that estrogen maintains rabbit luteal progestin production by stimulating the transfer of cytoplasmic cholesterol to the active site of P-450 side-chain cleavage on the inner mitochondrial membrane.


2003 ◽  
Vol 48 (4) ◽  
pp. 217-220 ◽  
Author(s):  
H.M. El-mashad ◽  
G. Zeeman ◽  
W.K.P. van Loon ◽  
G.P.A. Bot ◽  
G. Lettinga

The anaerobic digestion of solid animal wastes has been studied in an accumulation system (AC) at a filling time of 60 days followed by about 50 days batch digestion at 40 and 50°C. Poor mixing conditions during anaerobic digestion of solid wastes promote stratification of the substrate and intermediate products along the reactor height. The effect of layers stratification has also been followed in the AC system. The results showed a pronounced stratification of both CODdis and VFA concentrations along the AC system height. The temperature had a minor effect on the methane yield. The results also showed that methanogenesis was rate limiting in the AC system while the hydrolysis was the rate-limiting step during batch digestion.


1989 ◽  
Vol 264 (2) ◽  
pp. 495-502 ◽  
Author(s):  
J Iglesias ◽  
G F Gibbons

The involvement of oxygenated cholesterol precursors in the regulation of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase activity was studied by examining the effect of ketoconazole on the metabolism of mevalonic acid, lanosterol and the lanosterol metabolites, lanost-8-ene-3 beta,32-diol,3 beta-hydroxylanost-8-en-32-al and 4,4-dimethylcholesta-8,14-dien-3 beta-ol, in liver subcellular fractions and hepatocyte cultures. Inhibition of cholesterol synthesis from mevalonate by ketoconazole at concentrations up to 30 microM was due exclusively to a suppression of cytochrome P-450LDM (LDM = lanosterol demethylase) activity, resulting in a decreased rate of lanosterol 14 alpha-demethylation. No enzyme after the 14 alpha-demethylase step was affected. When [14C]mevalonate was the cholesterol precursor, inhibition of cytochrome P450LDM was accompanied by the accumulation of several labelled oxygenated sterols, quantitatively the most important of which was the C-32 aldehyde derivative of lanosterol. There was no accumulation of the 24,25-oxide derivative of lanosterol, nor of the C-32 alcohol. Under these conditions the activity of HMG-CoA reductase declined. The C-32 aldehyde accumulated to a far greater extent when lanost-8-ene-3 beta,32-diol rather than mevalonate was used as the cholesterol precursor in the presence of ketoconazole. With both precursors, this accumulation was reversed at higher concentrations of ketoconazole in liver subcellular fractions. A similar reversal was not observed in hepatocyte cultures.


2020 ◽  
Vol 3 (1) ◽  
pp. 11-18
Author(s):  
Hossam Al-Itawi

It has been established that the presence of paracetamol in wastewaters can cause a potential risk to the environment. This work examined the possibility of using calcined gypsum in removing paracetamol from aqueous solutions. At neutral pH conditions, calcined gypsum was successful in removing paracetamol via adsorption, from aqueous solutions with a removal efficiency that ranged between 56.8 to 65.3 % of an initial concentration of 600 ppm. Increased temperature (from 20 to 500C) had a minor effect on the removal % of paracetamol while increasing the initial calcined gypsum dose (from 0.5 gm to 3 gm) and contact time (up to 15 min) increased by the removal % of paracetamol. Thermodynamically, the adsorption of paracetamol by calcined gypsum process was found to be spontaneous and endothermic, and more likely a physical process, while kinetically; the Pseudo-Second order model was found to be the best fit compared to the Elovich model. The removal process mainly consists of two stages, and it could be deduced from the kinetic behavior of paracetamol adsorption that the recrystallization process can be another rate-limiting step in the process.


2014 ◽  
Vol 605 ◽  
pp. 388-391 ◽  
Author(s):  
Rungtiva Palangsuntikul ◽  
Saithip Pakapongpan ◽  
Porntip Khownarumit ◽  
Werasak Surareungchai

A novel, simple and precise electrochemical biosensor, was developed for measuring mevalonic acid (MA) concentration, which is thought to be a good indicator of HMG-CoA reductase activity. This sensor is based on noncovalent-linking NAD+/MWNTs nanocomposite coated on a screen-printed electrode (SPE). The resulting biosensor exhibited excellent electrocatalytic activity, fast response and good stability to MA. At the NAD+/MWNTs-modified SPE, the current is linear with the concentration of MA being within a concentration range from 18.1 to 145 μM with a limit of detection down to 4.25 μM (S/N = 3), and the sensor exhibited a sensitivity of 92.2 μA/mM.


1998 ◽  
Vol 38 (8-9) ◽  
pp. 77-84 ◽  
Author(s):  
M. Majone ◽  
P. Massanisso ◽  
R. Ramadori

In various activated sludge systems, the biomass grows under transient (unbalanced) conditions and the storage response (formation of internal polymers as the fastest adaptation to the changing environment) becomes important. Till now the role of storage on population dynamics has been deeply investigated under anaerobic (EBPR processes) or aerobic (bulking control) conditions. Little attention has been given to processes including anoxic conditions even though in many of them storage phenomena are likely to occur (anoxic selectors, nitrogen removal processes with addition of an external source of readily biodegradable COD or with aerobic contact/anoxic stabilization). For these reasons, the aim of the present work was to investigate storage and succeeding use of stored products under anoxic and mixed (anoxic/aerobic) conditions. Batch experiments have shown that a mixed culture selected under aerobic conditions and intermittent feed (acetate-limited medium), was also able to take up acetate (90–100 mgCOD/gCOD h) and store it as PHB (35–40 mgCOD/gCOD h) under anoxic conditions. After acetate depletion, the stored PHB was used for growth and maintenance. The NUR on acetate in the presence of storage was 20 mgN/gVSS h (which corresponded to a COD removal of 6.9 mgCOD/mgN) while it dropped to 10–3 mgN/gVSS h in the “endogenous phase” when denitrification was on the stored PHB. The presence of aerobic conditions instead of anoxic ones had a major positive effect on the rate and yield of PHB storage while it had only a minor effect on the rate of PHB consumption. The latter observation can be explained by assuming that the hydrolysis of the stored product is the rate limiting step of the “endogenous” metabolism and that the hydrolysis rate is not highly dependent on aerobic-anoxic conditions. Cross-comparison of PHB storage and consumption under aerobic/anoxic conditions made it possible to determine that, in the particular mixed culture under investigation, all aerobic heterotrophs able to store were also able to denitrify.


Bioanalysis ◽  
2014 ◽  
Vol 6 (7) ◽  
pp. 919-933 ◽  
Author(s):  
Alison VM Rodrigues ◽  
James L Maggs ◽  
Stephen J McWilliam ◽  
Munir Pirmohamed ◽  
Muireann Coen ◽  
...  

2009 ◽  
Vol 20 (14) ◽  
pp. 3330-3341 ◽  
Author(s):  
Gil S. Leichner ◽  
Rachel Avner ◽  
Dror Harats ◽  
Joseph Roitelman

The endoplasmic reticulum (ER) glycoprotein HMG-CoA reductase (HMGR) catalyzes the rate-limiting step in sterols biosynthesis. Mammalian HMGR is ubiquitinated and degraded by the proteasome when sterols accumulate in cells, representing the best example for metabolically controlled ER-associated degradation (ERAD). This regulated degradation involves the short-lived ER protein Insig-1. Here, we investigated the dislocation of these ERAD substrates to the cytosol en route to proteasomal degradation. We show that the tagged HMGR membrane region, HMG350-HA, the endogenous HMGR, and Insig-1-Myc, all polytopic membrane proteins, dislocate to the cytosol as intact full-length polypeptides. Dislocation of HMG350-HA and Insig-1-Myc requires metabolic energy and involves the AAA-ATPase p97/VCP. Sterols stimulate HMG350-HA and HMGR release to the cytosol concurrent with removal of their N-glycan by cytosolic peptide:N-glycanase. Sterols neither accelerate dislocation nor stimulate deglycosylation of ubiquitination-defective HMG350-HA(K89 + 248R) mutant. Dislocation of HMG350-HA depends on Insig-1-Myc, whose dislocation and degradation are sterol independent. Coimmunoprecipitation experiments demonstrate sterol-stimulated association between HMG350-HA and Insig-1-Myc. Sterols do not enhance binding to Insig-1-Myc of HMG350-HA mutated in its sterol-sensing domain or of HMG350-HA(K89 + 248R). Wild-type HMG350-HA and Insig-1-Myc coimmunoprecipitate from the soluble fraction only when both proteins were coexpressed in the same cell, indicating their encounter before or during dislocation, raising the possibility that they are dislocated as a tightly bound complex.


Sign in / Sign up

Export Citation Format

Share Document