scholarly journals Motor activity during searching and walking movements of cockroach legs

1987 ◽  
Vol 133 (1) ◽  
pp. 111-120 ◽  
Author(s):  
F. Delcomyn

1. Rhythmic motor activity may be recorded in the legs of cockroaches during the execution of several different types of behaviour that involve leg movements. It was examined in detail during searching and walking. 2. During walking, motor activity always consisted of a series of bursts separated by silent periods. During searching, it was usually continual, but modulated in frequency. 3. Sometimes, the motor pattern recorded from a searching leg was burst-like rather than modulated. In these cases, it could nevertheless be reliably distinguished from the motor pattern recorded during walking by a simple analysis of the burst pattern. 4. An analysis of the motor pattern recorded during righting indicated that this pattern was more like that for walking than that for searching. Therefore, searching is not simply walking that lacks certain periodic sensory input due to leg contact with the ground. 5. It is concluded that walking and searching can be reliably distinguished from one another on the basis of an analysis of a record of motor activity in a single leg muscle only. An ability to distinguish between similar types of behaviour on the basis of the motor pattern may prove useful in a variety of experiments.

1982 ◽  
Vol 99 (1) ◽  
pp. 185-196 ◽  
Author(s):  
J. A. Kahn ◽  
A. Roberts

Rhythmic motor nerve activity was recorded in stage 37/38 Xenopus embryos paralysed with curare. The activity was similar to the swimming motor pattern in the following ways: cycle period (40–125 ms), alternation of activity on either side of a segment, rostro-caudal phase lag. Episodes of rhythmic motor activity could be evoked by stimuli that evoke swimming and inhibited by stimuli that normally inhibit swimming. On this basis we conclude that the swimming motor pattern is generated by a central nervous mechanism and is not dependent on sensory feedback. In addition to the swimming pattern, another pattern of motor activity (‘synchrony’) was sometimes recorded in curarized embryos. In this, the rhythmic bursts on either side of a segment occurred in synchrony, and the rhythm period (20–50 ms) was half that in swimming. This was probably not an artifact of curarization as there were indications of a similar pattern in uncurarized embryos. Its function remains unclear.


1981 ◽  
Vol 92 (1) ◽  
pp. 277-288 ◽  
Author(s):  
J. R. GROTE

Leg movements and leg muscle activity were monitored in unrestrained crayfish walking freely under several different load conditions. A variety of changes in the character of locomotion was found to vary with load including: (1) the timing and frequency of the step cycle and in particular the power stroke duration; (2) significant leg-positional changes which result in increased mechanical advantage under load; and (3) the (loadinduced) recruitment of the depressor muscle. In restrained, immobile animals, isometric loading of depression resulted in inhibition of motor activity in the depressor-remotor nerve, an effect similar to the vertebrate tendon reflex.


1982 ◽  
Vol 98 (1) ◽  
pp. 195-211
Author(s):  
ANDREW D. McCLELLAN

Feeding, regurgitation, and rejection in the marine gastropod Pleurobranchaea all involve similar but not identical rhythmic movements of buccal mass structures such as the radula, jaws and lips. The part of the motor pattern which produces rhythmic radula movement, as recorded in the major external muscles of the buccal mass of behaving semi-intact preparations, was similar during the three different types of behaviour, suggesting that they share a common motor-pattern generator. Other parts of the motor pattern were only obviously different during the vomiting phase of regurgitation. Differences in the function and motor patterns of feeding and rejection are presumably accounted for by differences in the activity of muscles which could not be recorded from in this study (e.g. jaw muscles). A general conclusion is that buccal rhythms in gastropods cannot automatically be assumed to underlie feeding, and this is particularly true for dissected preparations which do not execute a clear behavioural response. It would be necessary either to record motor activity that is unique for a given behaviour, or to employ preparations which execute unambiguous behavioural responses.


2006 ◽  
Vol 95 (5) ◽  
pp. 3154-3163 ◽  
Author(s):  
S. A. Kautz ◽  
C. Patten ◽  
R. R. Neptune

Recent investigation in persons with clinically complete spinal cord injury has revealed that locomotor activity in one limb can activate rhythmic locomotor activity in the opposite limb. Although our previous research has demonstrated profound influences of the nonparetic limb on paretic limb motor activity poststroke, the potency of interlimb pathways for increasing recruitment of the paretic limb motor pattern is unknown. This experiment tested whether there is an increased propensity for rhythmic motor activity in one limb (pedaling limb) to induce rhythmic motor activity in the opposite limb (test limb) in persons poststroke. Forty-nine subjects with chronic poststroke hemiparesis and twenty controls pedaled against a constant mechanical load with their pedaling leg while we recorded EMG and pedal forces from the test leg. For the experimental conditions, subjects were instructed to either pedal with their test leg (bilateral pedaling) or rest their test leg while it was either stationary or moved anti-phased (unilateral pedaling). In persons poststroke, unilateral pedaling activated a complete pattern of rhythmic alternating muscle activity in the nonpedaling, test leg. This effect was most clearly demonstrated in the most severely impaired individuals. In most of the control subjects, unilateral pedaling activated some muscles in the nonpedaling leg weakly, if at all. We propose that, ipsilateral excitatory pathways associated with contralateral pedaling in control subjects are increasingly up-regulated in both legs in persons with hemiparesis as a function of increased hemiparetic severity. This enhancement of interlimb pathways may be of functional importance since contralateral pedaling induced a complete motor pattern of similar amplitude to the bilateral pattern in both the paretic and nonparetic leg of the subjects with severe hemiparesis.


2001 ◽  
Vol 204 (7) ◽  
pp. 1307-1317 ◽  
Author(s):  
D.L. McLean ◽  
J.R. McDearmid ◽  
K.T. Sillar

Nitric oxide (NO) is a ubiquitous neuromodulator with a diverse array of functions in a variety of brain regions, but a role for NO in the generation of locomotor activity has yet to be demonstrated. The possibility that NO is involved in the generation of motor activity in embryos of the frog Rana temporaria was investigated using the NO donors S-nitroso-n-acetylpenicillamine (SNAP; 100--500 micromol l(−1)) and diethylamine nitric oxide complex sodium (DEANO; 25--100 micromol l(−1)). Immobilised Rana temporaria embryos generate a non-rhythmic ‘lashing’ motor pattern either spontaneously or in response to dimming of the experimental bath illumination. Bath-applied NO donors triggered a qualitatively similar motor pattern in which non-rhythmic motor bursts were generated contra- and ipsilaterally down the length of the body. The inactive precursor of SNAP, n-acetyl-penicillamine (NAP), at equivalent concentrations did not trigger motor activity. NO donors failed to initiate swimming and had no measurable effects on the parameters of swimming induced by electrical stimulation. Intracellular recordings with potassium-acetate-filled electrodes revealed that the bursts of ventral root discharge induced by NO donors were accompanied by phasic depolarisations in motor neurons. During the inter-burst intervals, periods of substantial membrane hyperpolarization below the normal resting potential were observed, presumably coincident with contralateral ventral root activity. With KCl-filled electrodes, inhibitory potentials were strongly depolarising, suggesting that inhibition was Cl(−)-dependent. The synaptic drive seen in motor neurons after dimming of the illumination was very similar to that induced by the NO donors. NADPH-diaphorase histochemistry identified putative endogenous sources of NO in the central nervous system and the skin. Three populations of bilaterally symmetrical neurons were identified within the brainstem. Some of these neurons had contralateral projections and many had axonal processes that projected to and entered the marginal zones of the spinal cord, suggesting that they were reticulospinal.


1991 ◽  
Vol 156 (1) ◽  
pp. 483-502 ◽  
Author(s):  
F. Delcomyn

1. The effects of amputation of a rear leg on the pattern of motor activity in the legs of freely walking cockroaches (Periplaneta americana L.) were studied. 2. Amputation affected both the frequency and the timing (phase) of motor bursts during a stepping cycle. Bursts in the stump of an amputated rear leg and in the contralateral (intact) rear leg often occurred at two or three times the frequency of bursts in the other legs. The remaining legs also showed multiple bursting during some steps. 3. Amputation affected the phase of motor bursts in two different ways. First, for every leg pair, phase was more variable after amputation, whether or not the mean phase was affected. Second, for some leg pairs, the mean phase itself was altered. During most steps, the timing of motor bursts in the stump of the amputated leg was walking-speed-dependent relative to bursts in the anterior legs. In contrast, the timing of bursts in the stump relative to bursts in the legs across the body from it showed no such speed-dependent timing. Timing between bursts in pairs of intact legs also showed either speed-dependent or speed-independent effects, depending on the pair under consideration. 4. The effects of amputation were not consistent. After loss of a leg, bursts in some leg pairs occurred synchronously in some insects and alternately in others. Even in single insects there were cases in which the timing between bursts in two legs switched from one value to another during walking. 5. These effects of amputation were manifest during slow walking only. At higher speeds, the timing of motor bursts in different pairs of legs was consistently closer to that seen during walking in intact insects. 6. Three conclusions are drawn from these results. (i) During slow walking, sensory feedback from the legs helps maintain the timing of adjacent ipsilateral leg pairs, but has little influence on contralateral pairs. (ii) During slow walking, either sensory input is quite variable, or it has variable effects on the motor pattern. (iii) During fast walking, sensory input from the legs seems to play a minimal role, if any, in the timing of the motor pattern of walking.


2019 ◽  
Author(s):  
Friedrich Lersch ◽  
Pascal Jerney ◽  
Heiko Kaiser ◽  
Cédric Willi ◽  
Katharina Steck ◽  
...  

Motor activity during general anesthesia (GA) without curarization is often interpreted as reflecting insufficient analgosedation. Here we present the case of an octogenarian scheduled for deep sclerectomy receiving opioid-sparing electroencephalography-(EEG)-guided anesthesia. Periodic Leg Movements (PLM) made their appearance with ongoing surgery while his raw EEG displayed a pattern of deep GA (burst suppression). To the best of our knowledge, this is the first description of actimetry-documented persisting PLM during EEG-monitored GA. Recognizing PLM in the context of GA is of importance for anesthesiologists, as increasing sedation may increase motor activity.


1996 ◽  
Vol 76 (3) ◽  
pp. 687-717 ◽  
Author(s):  
E. Marder ◽  
R. L. Calabrese

Rhythmic movements are produced by central pattern-generating networks whose output is shaped by sensory and neuromodulatory inputs to allow the animal to adapt its movements to changing needs. This review discusses cellular, circuit, and computational analyses of the mechanisms underlying the generation of rhythmic movements in both invertebrate and vertebrate nervous systems. Attention is paid to exploring the mechanisms by which synaptic and cellular processes interact to play specific roles in shaping motor patterns and, consequently, movement.


Sign in / Sign up

Export Citation Format

Share Document