scholarly journals 5-Hydroxytryptamine: a second diuretic hormone in Rhodnius prolixus

1991 ◽  
Vol 156 (1) ◽  
pp. 557-566 ◽  
Author(s):  
S. H. Maddrell ◽  
W. S. Herman ◽  
R. L. Mooney ◽  
J. A. Overton

Bioassays of 5-hydroxytryptamine (5-HT) in fifth-instar Rhodnius prolixus haemolymph using Calliphora salivary glands indicate that: (1) biologically active 5-HT is present, (2) in unfed animals there is not enough 5-HT to stimulate Malpighian tubule fluid secretion, and (3) there is enough 5-HT soon after the initiation of feeding to stimulate rapid tubule secretion. The 5-HT receptor antagonists ketanserin and spiperone reversibly and selectively inhibit 5-HT-induced fluid secretion, indicating the presence of specific 5-HT receptors on Rhodnius Malpighian tubules. The data provide evidence that 5-HT is a naturally occurring hormone acting with a previously described peptide hormone to regulate diuresis in this species.

1997 ◽  
Vol 200 (17) ◽  
pp. 2363-2367 ◽  
Author(s):  
M C Quinlan ◽  
N J Tublitz ◽  
M J O'Donnell

Rhodnius prolixus eliminates NaCl-rich urine at high rates following its infrequent but massive blood meals. This diuresis involves stimulation of Malpighian tubule fluid secretion by diuretic hormones released in response to distention of the abdomen during feeding. The precipitous decline in urine flow that occurs several hours after feeding has been thought until now to result from a decline in diuretic hormone release. We suggest here that insect cardioacceleratory peptide 2b (CAP2b) and cyclic GMP are part of a novel mechanism of anti-diuresis. Secretion rates of 5-hydroxytryptamine-stimulated Malpighian tubules are reduced by low doses of CAP2b or cyclic GMP. Maximal secretion rates are restored by exposing tubules to 1 mmol l-1 cyclic AMP. Levels of cyclic GMP in isolated tubules increase in response to CAP2b, consistent with a role for cyclic GMP as an intracellular second messenger. Levels of cyclic GMP in tubules also increase as urine output rates decline in vivo, suggesting a physiological role for this nucleotide in the termination of diuresis.


2002 ◽  
Vol 205 (11) ◽  
pp. 1645-1655 ◽  
Author(s):  
Juan P. Ianowski ◽  
Robert J. Christensen ◽  
Michael J. O'Donnell

SUMMARYIntracellular ion activities (aion) and basolateral membrane potential (Vbl) were measured in Malpighian tubule cells of Rhodnius prolixus using double-barrelled ion-selective microelectrodes. In saline containing 103mmoll-1Na+, 6mmoll-1 K+ and 93mmoll-1Cl-, intracellular ion activities in unstimulated upper Malpighian tubules were 21, 86 and 32mmoll-1, respectively. In serotonin-stimulated tubules, aCl was unchanged, whereas aNa increased to 33mmoll-1 and aK declined to 71mmoll-1. Vbl was -59mV and -63mV for unstimulated and stimulated tubules, respectively. Calculated electrochemical potentials(Δμ/F) favour passive movement of Na+ into the cell and passive movement of Cl- out of the cell in both unstimulated and serotonin-stimulated tubules. Passive movement of K+ out of the cell is favoured in unstimulated tubules. In stimulated tubules, Δμ/F for K+ is close to 0 mV.The thermodynamic feasibilities of Na+-K+-2Cl-, Na+-Cl-and K+-Cl- cotransporters were evaluated by calculating the net electrochemical potential (Δμnet/F) for each transporter. Our results show that a Na+-K+-2Cl- or a Na+-Cl- cotransporter but not a K+-Cl- cotransporter would permit the movement of ions into the cell in stimulated tubules. The effects of Ba2+ and ouabain on Vbl and rates of fluid and ion secretion show that net entry of K+ through ion channels or the Na+/K+-ATPase can be ruled out in stimulated tubules. Maintenance of intracellular Cl- activity was dependent upon the presence of both Na+ and K+ in the bathing saline. Bumetanide reduced the fluxes of both Na+ and K+. Taken together, the results support the involvement of a basolateral Na+-K+-2Cl- cotransporter in serotonin-stimulated fluid secretion by Rhodnius prolixus Malpighian tubules.


1993 ◽  
Vol 177 (1) ◽  
pp. 1-22
Author(s):  
A. T. Marshall ◽  
P. Cooper ◽  
G. D. Rippon ◽  
A. E. Patak

Cricket Malpighian tubules have two morphologically distinct segments, a thin distal segment, which occupies approximately 10 % of the total tubule length, and a main segment. The two segments differ in secretion rates and response to corpora cardiaca extract. The secreted fluids differ in osmotic concentration and elemental composition. The distal segment secretes fluid at a rate (per mm length) which is approximately twice that of the main segment under control conditions. After stimulation by corpora cardiaca extract (Cc) the rate from the main segment approximately doubles whilst the distal segment rate remains unchanged. Fluid from the main segment and the whole tubule is slightly hypo-osmotic to the medium (5–11 mosmol kg-1) under control conditions, whereas that from the distal segment is slightly hyperosmotic (12 mosmol kg-1). On stimulation with Cc, the whole tubule fluid becomes slightly hyperosmotic (12 mosmol kg-1), that from the main segment remains slightly hypo-osmotic (3 mosmol kg-1) but fluid from the distal segment becomes very hyperosmotic (55 mosmol kg-1). Differences between the tubule fluid and the medium osmolality are indicated in parentheses. Fluid from the main segment has high concentrations of K (166 mmol l-1), Cl (111 mmol l-1), Na (41 mmol l-1) and P (83 mmol l-1), whereas that from the distal segment has high concentrations of K (101 mmol l-1) and Cl (137 mmol l-1). On stimulation with Cc, the elemental concentrations in fluids from the main segments and whole tubules do not change significantly but the K and Cl concentrations in distal segment fluid increase (182 and 188 mmol l-1 respectively). The Mg present in whole tubule fluid is derived largely from the distal segment. The ionic composition accounts for the observed osmotic concentrations in fluid from whole tubules, main segments and stimulated distal segments, but not for the concentrations in fluid from unstimulated distal segments. The fluid from unstimulated distal segments contains an unidentified organic solute accounting for approximately 90 mosmol kg-1 of the osmotic concentration. The distal segment contributes 22 % and 11 % of the fluid volume, 26 % Cl, 14 % K and 12 % Cl, 11 % K in control and Cc-stimulated tubules respectively. Considerably higher values are observed in individual tubules. The distal segment makes a significant contribution to the total ion output of the tubule. The cyclic AMP content of tubule segments treated with corpora cardiaca extract was found to increase in both main and distal segments. When expressed in terms of protein content there was no difference between segments. However, in terms of total cell volume, the cells of the distal segment had a tenfold greater cyclic AMP content than those of the main segment. This is consistent with a 10- to 20-fold higher secretion rate of K by the distal segment. It is suggested that the distal segment, whilst having a higher length-specific fluid secretion rate than the main segment, is, nevertheless, concerned primarily with ion and solute secretion since it is unresponsive to diuretic hormone. The prime role of the main segment, which does respond to diuretic hormone, is fluid secretion. There appear to be major differences in hydraulic conductivity between the two segments.


1997 ◽  
Vol 200 (11) ◽  
pp. 1627-1638 ◽  
Author(s):  
KA Collier ◽  
MJ O'Donnell

Summary The pH and concentrations of K+ and Cl- in the unstirred layer (USL) associated with the basolateral surfaces of the upper and lower Malpighian tubules of Rhodnius prolixus were measured using extracellular ion-selective microelectrodes. When stimulated with 5-hydroxytryptamine (5-HT) in vitro, the upper Malpighian tubule secretes Na+, K+, Cl- and water at high rates; the lower Malpighian tubule reabsorbs K+ and Cl- but not water. Concentrations of K+ and Cl- in the unstirred layer of the lower Malpighian tubule ([K+]USL, [Cl-]USL) were greater than those in the bathing saline, consistent with the accumulation of K+ and Cl- in the USL during 5-HT-stimulated KCl reabsorption. [K+]USL exceeded [K+]Bath by as much as 5.3-fold. Calculations of K+ flux based on measurements of [K+]USL at various distances from the tubule surface agreed well with flux calculated from the rate of fluid secretion and the change in K+ concentration of the secreted fluid during passage through the lower tubule. Concentrations of K+ in the unstirred layer of the upper Malpighian tubule were reduced relative to those in the bathing saline, consistent with depletion of K+ from the USL during 5-HT-stimulated secretion of K+ from bath to lumen. Changes in [K+]USL during 5-HT-stimulated K+ secretion from single upper Malpighian tubule cells could be resolved. Although differences between [K+]USL and [K+]Bath were apparent for upper and lower tubules in an in situ preparation, they were reduced relative to the differences measured using isolated tubules. We suggest that convective mixing of the fluids around the tubules by contractions of the midgut and hindgut reduces, but does not eliminate, differences between [K+]USL and [K+]Bath in situ. The USL was slightly acidic relative to the bath in 5-HT-stimulated upper and lower tubules; contributions to USL acidification are discussed. The results also show that the techniques described in this paper can resolve rapid and localized changes in ion transport across different regions of Malpighian tubules in response to stimulants or inhibitors of specific membrane transporters.


1993 ◽  
Vol 178 (1) ◽  
pp. 231-243 ◽  
Author(s):  
N. Audsley ◽  
G. M. Coast ◽  
D. A. Schooley

1. Manduca sexta diuretic hormone (Mas-DH) stimulates fluid secretion by adult Malpighian tubules of M. sexta, demonstrating its site of diuretic action in M. sexta for the first time. It was not possible to develop a suitable bioassay to measure fluid secretion in larval proximal tubules. 2. Mas-DH has an antidiuretic action on the cryptonephric complex of larval M. sexta because it increases fluid absorption from the rectum. It appears that in this complex Mas-DH is acting on a Na+/K+/2Cl- co-transporter, presumably on the basal membrane of the cryptonephric Malpighian tubules, because Mas-DH-stimulated fluid absorption by the cryptonephric complex is inhibited by bumetanide or the removal of Cl-, Na+ or K+ from the haemolymph side of the tissue. This is the first demonstration of hormonal control of fluid absorption by the cryptonephric complex. 3. Concomitant with the stimulation of fluid transport, Mas-DH increases the amount of cyclic AMP secreted by adult Malpighian tubules and the cryptonephric complex. In addition, Mas-DH promotes cyclic AMP production by the larval proximal tubules.


1995 ◽  
Vol 269 (6) ◽  
pp. R1321-R1326 ◽  
Author(s):  
S. A. Davies ◽  
G. R. Huesmann ◽  
S. H. Maddrell ◽  
M. J. O'Donnell ◽  
N. J. Skaer ◽  
...  

A cardioacceleratory peptide, CAP2b, identified originally in the lepidopteran Manduca sexta, stimulates fluid secretion by Malpighian tubules of the dipteran Drosophila melanogaster. High-performance liquid chromatography analyses of adult D. melanogaster reveal the presence of a CAP2b-like peptide, that coelutes with M. sexta CAP2b and synthetic CAP2b and that has CAP2b-like effects on the M. sexta heart. CAP2b accelerates fluid secretion in tubules stimulated by adenosine 3',5'-cyclic monophosphate (cAMP) but has no effect on tubules stimulated by guanosine 3',5'-cyclic monophosphate (cGMP), implying that it acts through the latter pathway. By contrast, the action of leucokinin is additive to both cAMP and cGMP but not to thapsigargin, suggesting that leucokinin acts by the elevation of intracellular calcium. CAP2b stimulation elevates tubule cGMP levels but not those of cAMP. By contrast, leucokinin has no effect on levels of either cyclic nucleotide. Both CAP2b and cGMP increase transepithelial potential difference, suggesting that stimulation of vacuolar-adenosinetriphosphatase action underlies the corresponding increases in fluid secretion. Overall, the results show that a Drosophila CAP2b-related peptide acts to stimulate fluid secretion by Malpighian tubules through the cGMP-signaling pathway.


2014 ◽  
Vol 307 (7) ◽  
pp. R828-R836 ◽  
Author(s):  
Paula Gioino ◽  
Brendan G. Murray ◽  
Juan P. Ianowski

Rhodnius prolixus is a hematophagous insect vector of Chagas disease capable of ingesting up to 10 times its unfed body weight in blood in a single meal. The excess water and ions ingested with the meal are expelled through a rapid postprandial diuresis driven by the Malpighian tubules. Diuresis is triggered by at least two diuretic hormones, a CRF-related peptide and serotonin, which were traditionally believed to trigger cAMP as an intracellular second messenger. Recently, calcium has been suggested to act as a second messenger in serotonin-stimulated Malpighian tubules. Thus, we tested the role of calcium in serotonin-stimulated Malpighian tubules from R. prolixus. Our results show that serotonin triggers cAMP-mediated intracellular Ca2+ waves that were blocked by incubation in Ca2+-free saline containing the cell membrane-permeant Ca2+ chelator BAPTA-AM, or the PKA blocker H-89. Treatment with 8-Br-cAMP triggered Ca2+ waves that were blocked by H-89 and BAPTA-AM. Analysis of the secreted fluid in BAPTA-AM-treated tubules showed a 75% reduction in fluid secretion rate with increased K+ concentration, reduced Na+ concentration. Taken together, the results indicate that serotonin triggers cAMP and PKA-mediated Ca2+ waves that are required for maximal ion transport rate.


1990 ◽  
Vol 77 (1) ◽  
pp. 136-142 ◽  
Author(s):  
Ricardo Montoreano ◽  
Francisco Triana ◽  
Teresa Abate ◽  
Rafael Rangel-Aldao

Sign in / Sign up

Export Citation Format

Share Document