Maximum speed and mechanical power output in lizards.

1997 ◽  
Vol 200 (16) ◽  
pp. 2189-2195 ◽  
Author(s):  
C T Farley

The goal of the present study was to test the hypothesis that maximum running speed is limited by how much mechanical power the muscular system can produce. To test this hypothesis, two species of lizards, Coleonyx variegatus and Eumeces skiltonianus, sprinted on hills of different slopes. According to the hypothesis, maximum speed should decrease on steeper uphill slopes but mechanical power output at maximum speed should be independent of slope. For level sprinting, the external mechanical power output was determined from force platform data. For uphill sprinting, the mechanical power output was approximated as the power required to lift the center of mass vertically. When the slope increased from level to 40 degrees uphill, maximum speed decreased by 28% in C. variegatus and by 16% in E. skiltonianus. At maximum speed on a 40 degrees uphill slope in both species, the mechanical power required to lift the body vertically was approximately 3.9 times greater than the external mechanical power output at maximum speed on the level. Because total limb mass is small in both species (6-16% of body mass) and stride frequency is similar at maximum speed on all slopes, the internal mechanical power output is likely to be small and similar in magnitude on all slopes. I conclude that the muscular system is capable of producing substantially more power during locomotion than it actually produces during level sprinting. Thus, the capacity of the muscular system to produce power does not limit maximum running speed.

2021 ◽  
Vol 288 (1945) ◽  
pp. 20202726
Author(s):  
Robin Thandiackal ◽  
Carl H. White ◽  
Hilary Bart-Smith ◽  
George V. Lauder

Fish routinely accelerate during locomotor manoeuvres, yet little is known about the dynamics of acceleration performance. Thunniform fish use their lunate caudal fin to generate lift-based thrust during steady swimming, but the lift is limited during acceleration from rest because required oncoming flows are slow. To investigate what other thrust-generating mechanisms occur during this behaviour, we used the robotic system termed Tunabot Flex, which is a research platform featuring yellowfin tuna-inspired body and tail profiles. We generated linear accelerations from rest of various magnitudes (maximum acceleration of 3.22   m   s − 2 at 11.6   Hz tail beat frequency) and recorded instantaneous electrical power consumption. Using particle image velocimetry data, we quantified body kinematics and flow patterns to then compute surface pressures, thrust forces and mechanical power output along the body through time. We found that the head generates net drag and that the posterior body generates significant thrust, which reveals an additional propulsion mechanism to the lift-based caudal fin in this thunniform swimmer during linear accelerations from rest. Studying fish acceleration performance with an experimental platform capable of simultaneously measuring electrical power consumption, kinematics, fluid flow and mechanical power output provides a new opportunity to understand unsteady locomotor behaviours in both fishes and bioinspired aquatic robotic systems.


2001 ◽  
Vol 204 (3) ◽  
pp. 495-507 ◽  
Author(s):  
M.R. Williamson ◽  
K.P. Dial ◽  
A.A. Biewener

In vivo measurements of pectoralis muscle length change and force production were obtained using sonomicrometry and delto-pectoral bone strain recordings during ascending and slow level flight in mallards (Anas platyrhynchos). These measurements provide a description of the force/length properties of the pectoralis under dynamic conditions during two discrete flight behaviors and allow an examination of the effects of differences in body size and morphology on pectoralis performance by comparing the results with those of a recent similar study of slow level flight in pigeons (Columbia livia). In the present study, the mallard pectoralis showed a distinct pattern of active lengthening during the upstroke. This probably enhances the rate of force generation and the magnitude of the force generated and, thus, the amount of work and power produced during the downstroke. The power output of the pectoralis averaged 17.0 W kg(−)(1)body mass (131 W kg(−)(1)muscle mass) during slow level flight (3 m s(−)(1)) and 23.3 W kg(−)(1)body mass (174 W kg(−)(1)muscle mass) during ascending flight. This increase in power was achieved principally via an increase in muscle strain (29 % versus 36 %), rather than an increase in peak force (107 N versus 113 N) or cycle frequency (8.4 Hz versus 8.9 Hz). Body-mass-specific power output of mallards during slow level flight (17.0 W kg(−)(1)), measured in terms of pectoralis mechanical power, was similar to that measured recently in pigeons (16.1 W kg(−)(1)). Mallards compensate for their greater body mass and proportionately smaller wing area and pectoralis muscle volume by operating with a high myofibrillar stress to elevate mechanical power output.


1981 ◽  
Vol 91 (1) ◽  
pp. 117-129 ◽  
Author(s):  
TIMOTHY M. CASEY

Mechanical power output, based on measured power input, is compared with calculated values for aerodynamic and inertial power output in sphinx moths ranging from 350 to 3400 mg. Aerodynamic power output, calculated from momentum and blade-element aerodynamic theories, scales with the 1.08 power of body mass, amounting to about 40% of the mechanical power output of large moths to about 15% in the smallest individuals. Calculated value for the inertial power cost of hovering represents a larger fraction of the mechanical power output than the aerodynamic cost in all moths, with the value increasing as body mass decreases. Independent estimates of inertial power output based on metabolic data are similar to those obtained from calculations of the moment of inertia for the wings. These data suggest that inertial power output represents the largest power requirement for hovering sphinx moths, and that elastic torques do not significantly reduce the mechanical power output. Higher mass-specific power input of small sphinx moths appears to be the result of greater mass-specific inertial power requirements. Estimates of flight cost based on morphology and flight mechanics of sphinx moths yield values for mechanical power output which are similar to values estimated from their flight metabolism.


1985 ◽  
Vol 116 (1) ◽  
pp. 271-289 ◽  
Author(s):  
TIMOTHY M. CASEY ◽  
MICHAEL L. MAY ◽  
KENNETH R. MORGAN

Mass-specific oxygen consumption of euglossine bees during free hove ringflight is inversely related to body mass, varying from 66 mlO2 g−1 h−1 in a 1.0 -g bee to 154 mlO2 g−1 h−1 in a 0.10 -g bee. Individuals of Eulaema and Eufreisea spp. have smaller wings and higher wing stroke frequency and energy metabolism at any given mass than bees of Euglossa spp. or Exaeretefrontalis. Calculated aero dynamic power requirements represent only a small fraction of the energy metabolism, and apparent flight efficiency aero dynamic power (= induced + profile power)/power input decreases as sizedeclines. If efficiency of flight muscle = 0.2, the mechanical power output of hovering bees varies inversely with body mass from about 480 to 1130 W kg−1 of muscle. These values are 1.9 to 4.5 times greater than previous predictions of maximum mechanical power output (Weis-Fogh & Alexander, 1977; see also Ellington, 1984c). Mass-specific energy expenditure per wing stroke is independent of body mass and essentially the same for all euglossines. Differences in energy metabolism among bees having similar body mass isprimarily related to differences in wing stroke frequency. Scaling of energy metabolism in relation to mass is generally similar to the relationship for sphingid moths despite the fact that bees have asynchronous flight musclewhereas moths have synchronous muscle.


Author(s):  
Michael Günther ◽  
Robert Rockenfeller ◽  
Tom Weihmann ◽  
Daniel F. B. Haeufle ◽  
Thomas Götz ◽  
...  

AbstractThe maximum running speed of legged animals is one evident factor for evolutionary selection—for predators and prey. Therefore, it has been studied across the entire size range of animals, from the smallest mites to the largest elephants, and even beyond to extinct dinosaurs. A recent analysis of the relation between animal mass (size) and maximum running speed showed that there seems to be an optimal range of body masses in which the highest terrestrial running speeds occur. However, the conclusion drawn from that analysis—namely, that maximum speed is limited by the fatigue of white muscle fibres in the acceleration of the body mass to some theoretically possible maximum speed—was based on coarse reasoning on metabolic grounds, which neglected important biomechanical factors and basic muscle-metabolic parameters. Here, we propose a generic biomechanical model to investigate the allometry of the maximum speed of legged running. The model incorporates biomechanically important concepts: the ground reaction force being counteracted by air drag, the leg with its gearing of both a muscle into a leg length change and the muscle into the ground reaction force, as well as the maximum muscle contraction velocity, which includes muscle-tendon dynamics, and the muscle inertia—with all of them scaling with body mass. Put together, these concepts’ characteristics and their interactions provide a mechanistic explanation for the allometry of maximum legged running speed. This accompanies the offering of an explanation for the empirically found, overall maximum in speed: In animals bigger than a cheetah or pronghorn, the time that any leg-extending muscle needs to settle, starting from being isometric at about midstance, at the concentric contraction speed required for running at highest speeds becomes too long to be attainable within the time period of a leg moving from midstance to lift-off. Based on our biomechanical model we, thus, suggest considering the overall speed maximum to indicate muscle inertia being functionally significant in animal locomotion. Furthermore, the model renders possible insights into biological design principles such as differences in the leg concept between cats and spiders, and the relevance of multi-leg (mammals: four, insects: six, spiders: eight) body designs and emerging gaits. Moreover, we expose a completely new consideration regarding the muscles’ metabolic energy consumption, both during acceleration to maximum speed and in steady-state locomotion.


1993 ◽  
Vol 176 (1) ◽  
pp. 89-101 ◽  
Author(s):  
R. J. Full ◽  
M. A. R. Koehl

We examined the effects of aerodynamic forces on the mechanical power output of running insects for which kinematic data were available. Drag and lift on the cockroaches Periplaneta americana (a small, rapidly running species) and Blaberus discoidalis (a larger, more slowly moving species) were measured in a wind tunnel. Although lift would be expected to affect power output by altering functional body weight, the magnitude of the lift on these cockroaches was less than 2 % of their weight. Drag, which increases the horizontal force that must be exerted to run at a given speed, accounted for 20–30 % of the power output of P. americana running at speeds of 1.0-1.5 m s-1, but had a much smaller effect on B. discoidalis. Aerodynamic drag on the body (parasite drag) can significantly increase the mechanical power output necessary for small, rapidly running insects in contrast to larger running animals and to flying insects.


1997 ◽  
Vol 83 (5) ◽  
pp. 1749-1755 ◽  
Author(s):  
Yudai Takarada ◽  
Yuichi Hirano ◽  
Yusuke Ishige ◽  
Naokata Ishii

Takarada, Yudai, Yuichi Hirano, Yusuke Ishige, and Naokata Ishii. Stretch-induced enhancement of mechanical power output in human multijoint exercise with countermovement. J. Appl. Physiol. 83(5): 1749–1755, 1997.—The relation between the eccentric force developed during a countermovement and the mechanical power output was studied in squatting exercises under nominally isotonic load (50% of 1-repetition maximum). The subjects ( n = 5) performed squatting exercises with a countermovement at varied deceleration rates before lifting the load. The ground reaction force and video images were recorded to obtain the power output of the body. Net muscle moments acting at hip, knee, and ankle joints were calculated from video recordings by using inverse dynamics. When an intense deceleration was taken at the end of downward movement, large eccentric force was developed, and the mechanical power subsequently produced during the lifting movement was consistently larger than that produced without the countermovement. Both maximal and mean power outputs during concentric actions increased initially with the eccentric force, whereas they began to decline when the eccentric force exceeded ∼1.4 times the sum of load and body weight. Video-image analysis showed that this characteristic relation was predominantly determined by the torque around the knee joint. Electromyographic analyses showed no consistent increase in time-averaged integrated electromyograph from vastus lateralis with the power output, suggesting that the enhancement of power output is primarily caused by the prestretch-induced improvement of an intrinsic force-generating capability of the agonist muscle.


2001 ◽  
Vol 204 (21) ◽  
pp. 3601-3619 ◽  
Author(s):  
Graham N. Askew ◽  
Richard L. Marsh ◽  
Charles P. Ellington

SUMMARYBlue-breasted quail (Coturnix chinensis) were filmed during take-off flights. By tracking the position of the centre of mass of the bird in three dimensions, we were able to calculate the power required to increase the potential and kinetic energy. In addition, high-speed video recordings of the position of the wings over the course of the wing stroke, and morphological measurements, allowed us to calculate the aerodynamic and inertial power requirements. The total power output required from the pectoralis muscle was, on average, 390 W kg–1, which was similar to the highest measurements made on bundles of muscle fibres in vitro (433 W kg–1), although for one individual a power output of 530 W kg–1 was calculated. The majority of the power was required to increase the potential energy of the body. The power output of these muscles is the highest yet found for any muscle in repetitive contractions.We also calculated the power requirements during take-off flights in four other species in the family Phasianidae. Power output was found to be independent of body mass in this family. However, the precise scaling of burst power output within this group must await a better assessment of whether similar levels of performance were measured across the group. We extended our analysis to one species of hawk, several species of hummingbird and two species of bee. Remarkably, we concluded that, over a broad range of body size (0.0002–5 kg) and contractile frequency (5–186 Hz), the myofibrillar power output of flight muscles during short maximal bursts is very high (360–460 W kg–1) and shows very little scaling with body mass. The approximate constancy of power output means that the work output varies inversely with wingbeat frequency and reaches values of approximately 30–60 J kg–1 in the largest species.


2002 ◽  
Vol 205 (10) ◽  
pp. 1485-1494 ◽  
Author(s):  
Thomas J. Roberts ◽  
Jeffrey A. Scales

SUMMARYWe tested the hypothesis that the hindlimb muscles of wild turkeys(Meleagris gallopavo) can produce maximal power during running accelerations. The mechanical power developed during single running steps was calculated from force-plate and high-speed video measurements as turkeys accelerated over a trackway. Steady-speed running steps and accelerations were compared to determine how turkeys alter their running mechanics from a low-power to a high-power gait. During maximal accelerations, turkeys eliminated two features of running mechanics that are characteristic of steady-speed running: (i) they produced purely propulsive horizontal ground reaction forces, with no braking forces, and (ii) they produced purely positive work during stance, with no decrease in the mechanical energy of the body during the step. The braking and propulsive forces ordinarily developed during steady-speed running are important for balance because they align the ground reaction force vector with the center of mass. Increases in acceleration in turkeys correlated with decreases in the angle of limb protraction at toe-down and increases in the angle of limb retraction at toe-off. These kinematic changes allow turkeys to maintain the alignment of the center of mass and ground reaction force vector during accelerations when large propulsive forces result in a forward-directed ground reaction force. During the highest accelerations, turkeys produced exclusively positive mechanical power. The measured power output during acceleration divided by the total hindlimb muscle mass yielded estimates of peak instantaneous power output in excess of 400 W kg-1 hindlimb muscle mass. This value exceeds estimates of peak instantaneous power output of turkey muscle fibers. The mean power developed during the entire stance phase increased from approximately zero during steady-speed runs to more than 150 W kg-1muscle during the highest accelerations. The high power outputs observed during accelerations suggest that elastic energy storage and recovery may redistribute muscle power during acceleration. Elastic mechanisms may expand the functional range of muscle contractile elements in running animals by allowing muscles to vary their mechanical function from force-producing struts during steady-speed running to power-producing motors during acceleration.


Sign in / Sign up

Export Citation Format

Share Document