Cyclic changes in the tension of the contractile vacuole complex membrane control its exocytotic cycle

1998 ◽  
Vol 201 (18) ◽  
pp. 2647-2658 ◽  
Author(s):  
T Tominaga ◽  
RD Allen ◽  
Y Naitoh

The freshwater protozoan Paramecium multimicronucleatum maintains a constant cytosolic osmolarity through the exocytotic activity of its contractile vacuole complex. The contractile vacuole (CV) expels the excess cytosolic water, acquired osmotically, to the exterior of the cell at fairly regular intervals. In a single exocytotic cycle, the CV swells as the cytosolic water enters the vacuole, rounds up, and then rapidly shrinks as the fluid is expelled through the pore of the CV. The exocytotic activity of the CV complex can sometimes be slowed and distorted by microelectrode impalement. Using a CV with exocytotic activity slowed in this way makes it possible to determine more precisely the time course of changes in the exocytotic-activity-related membrane capacitance and membrane potential of the organelle. We have clearly demonstrated that the radial arms of the CV were always severed after the CV had exhibited rounding. Microelectrode impalement sometimes caused a failure of the CV pore to open after rounding up, so that the CV entered the next fluid-filling phase without expelling its fluid. The radial arms remained severed from the CV during such prolonged rounding phases and then rejoined the CV at the start of the next fluid-filling phase. The rounding of the CV corresponds to an increase in the tension of the CV membrane. This suggested that the periodic development of increased tension in the CV membrane might be the primary event leading to periodic severing of the radial arms and the opening of the pore. We then observed that the CV and its radial arms sometimes became fragmented into vesicles when the cell had been mechanically ruptured in a salt solution. Many of the resulting in vitro vesicles showed periodic rounding and slackening which occurred at different times so that they were out of phase one with the other. This indicates that the membranes of the CV and the radial arms maintain their ability to develop a periodic increase in tension even after the cell has been ruptured. We propose the hypothesis that the CV membrane (together with its associated cytoskeletal structures) possesses a mechanism by which its tension is periodically increased. Such a periodic change in membrane tension may govern the exocytotic cycle of the contractile vacuole complex by increasing the tension to a point that the radial arms sever from the CV and the pore opens. Conversely, a decrease in the tension causes closure of the pore and rejoining of the radial arms to the CV. Transformation of the CV membrane into 40 nm tubules is assumed to be responsible for the development of tension in the planar CV membrane. The causes of this periodic tubulation must now be sought.

2000 ◽  
Vol 203 (2) ◽  
pp. 239-251 ◽  
Author(s):  
T. Tani ◽  
R.D. Allen ◽  
Y. Naitoh

The contractile vacuole of the freshwater protozoan Paramecium multimicronucleatum is a membrane-bound exocytotic vesicle that expels excess cytosolic water. The in vitro contractile vacuole isolated from P. multimicronucleatum along with a small amount of cytosol and confined under mineral oil showed periodic rounding and slackening at fairly regular intervals. Activity lasted for over 30 min at room temperature (24–27 degrees C). The rounding of the in vitro contractile vacuole corresponded to the increased membrane tension of the in vivo contractile vacuole that occurs immediately before fluid expulsion. Unlike the in vivo contractile vacuole, the in vitro contractile vacuole did not expel fluid, since it lacked a mechanism to form a pore. The subsequent slackening of the in vitro contractile vacuole corresponded to the fluid-filling phase of the in vivo contractile vacuole that occurs at decreased membrane tension. Fluid filling occurred in the in vitro contractile vacuole only when it was isolated together with its radial arms. In vitro membrane-bound vesicles obtained by ‘bisecting’ (although the two parts were not always identical in size) an in vitro contractile vacuole established their own independent rounding-slackening cycles. In vitro contractile vacuole vesicles could fuse again when the vesicles slackened. The fused vesicle then showed a rounding-slackening cycle with a period closer to that of the vesicle that exhibited the shorter cycle period. An additional rounding phase of the in vitro contractile vacuole could be induced by applying suction to a portion of its membrane with a micropipette when the contractile vacuole was in its slackened phase. This suggests that maximum tension development in the contractile vacuole membrane can be triggered when tension is increased in any part of the contractile vacuole membrane. The time from the start of an extra rounding phase to the next spontaneous rounding and for subsequent rounding-slackening cycles was nearly the same as that before the extra rounding phase. This implies that there is no master pacemaker to control the rounding-slackening cycle in the contractile vacuole membrane. Severed radial arms also became vesiculated and, like contractile vacuole membranes, these in vitro vesicles showed independent rounding-slackening cycles and vesicle-vesicle fusions. Thus, membrane derived from the radial arm seems to be identical in its tension-developing properties with the contractile vacuole membrane. ATP was found to be required for contractile vacuole rounding but inhibitors of actin or tubulin polymerization, such as cytochalasin B and Nocodazole, had no effect on the in vitro contractile vacuole's rounding-slackening cycle.


2002 ◽  
Vol 205 (20) ◽  
pp. 3261-3270 ◽  
Author(s):  
Heidi K. Grønlien ◽  
Christian Stock ◽  
Marilynn S. Aihara ◽  
Richard D. Allen ◽  
Yutaka Naitoh

SUMMARYThe electric potential of the contractile vacuole (CV) of Paramecium multimicronucleatum was measured in situ using microelectrodes,one placed in the CV and the other (reference electrode) in the cytosol of a living cell. The CV potential in a mechanically compressed cell increased in a stepwise manner to a maximal value (approximately 80 mV) early in the fluid-filling phase. This stepwise change was caused by the consecutive reattachment to the CV of the radial arms, where the electrogenic sites are located. The current generated by a single arm was approximately 1.3×10-10 A. When cells adapted to a hypotonic solution were exposed to a hypertonic solution, the rate of fluid segregation, RCVC, in the contractile vacuole complex (CVC) diminished at the same time as immunological labelling for V-ATPase disappeared from the radial arms. When the cells were re-exposed to the previous hypotonic solution, the CV potential, which had presumably dropped to near zero after the cell's exposure to the hypertonic solution, gradually returned to its maximum level. This increase in the CV potential occurred in parallel with the recovery of immunological labelling for V-ATPase in the radial arm and the resumption of RCVC or fluid segregation. Concanamycin B, a potent V-ATPase inhibitor, brought about significant decreases in both the CV potential and RCVC. We confirm that (i) the electrogenic site of the radial arm is situated in the decorated spongiome, and (ii) the V-ATPase in the decorated spongiome is electrogenic and is necessary for fluid segregation in the CVC. The CV potential remained at a constant high level(approximately 80 mV), whereas RCVC varied between cells depending on the osmolarity of the adaptation solution. Moreover, the CV potential did not change even though RCVC increased when cells adapted to one osmolarity were exposed to a lower osmolarity, implying that RCVC is not directly correlated with the number of functional V-ATPase complexes present in the CVC.


1983 ◽  
Vol 96 (1) ◽  
pp. 137-146 ◽  
Author(s):  
B. G. Miller ◽  
R. Tassell ◽  
G. M. Stone

The time-course of cell hypertrophy and changes in in-vitro rates of secretion and synthesis of protein in intercaruncular and caruncular endometrium and maternal and fetal cotyledonary placenta have been examined during days 0–112 of pregnancy in the ewe. The concentrations of high-affinity receptors for oestradiol and progesterone in nuclear and cytosol fractions from these tissues were also determined. Protein secretion by intercaruncular endometrium increased 25-fold between days 0 and 84. On day 84 10−5 m-colchicine blocked 75% of total secretion. Protein secretion did not increase in the other tissues. Protein synthesis and RNA: DNA ratio in intercaruncular endometrium increased steadily between days 0 and 112, whereas they did not change in caruncular endometrium between days 0 and 28 and declined in cotyledon between days 56 and 112. The levels of cytosol receptor for oestradiol and progesterone and of nuclear receptor for oestradiol in all tissues during days 56–112 were very low in relation to the corresponding levels in caruncular endometrium on day 0. The level of nuclear progesterone receptor in caruncular endometrium increased threefold between oestrus and day 28. The level of this receptor in cotyledon remained low on days 56–112, but in intercaruncular endometrium it increased to high values on days 84–112. The results demonstrated a major surge in secretory activity by the intercaruncular endometrium at around mid-gestation, which was associated with a marked increase in nuclear progesterone receptor levels but only a low level of nuclear oestradiol receptor. The observations do not suggest any important role for oestradiol or progesterone in the growth of fetal and maternal cotyledon.


2000 ◽  
Vol 84 (3) ◽  
pp. 1445-1452 ◽  
Author(s):  
Daniel Ulrich ◽  
Christian Stricker

Most excitatory synapses on neocortical pyramidal cells are located on dendrites, which are endowed with a variety of active conductances. The main origin for action potentials is thought to be at the initial segment of the axon, although local regenerative activity can be initiated in the dendrites. The transfer characteristics of synaptic voltage and charge along the dendrite to the soma remains largely unknown, although this is an essential determinant of neural input-output transformations. Here we perform dual whole-cell recordings from layer V pyramidal cells in slices from somatosensory cortex of juvenile rats. Steady-state and sinusoidal current injections are applied to characterize the voltage transfer characteristics of the apical dendrite under resting conditions. Furthermore, dendrosomatic charge and voltage transfer are determined by mimicking synapses via dynamic current-clamping. We find that around rest, the dendrite behaves like a linear cable. The cutoff frequency for somatopetal current transfer is around 4 Hz, i.e., synaptic inputs are heavily low-pass filtered. In agreement with linearity, transfer resistances are reciprocal in opposite directions, and the centroids of the synaptic time course are on the order of the membrane time constant. Transfer of excitatory postsynaptic potential (EPSP) charge, but not peak amplitude, is positively correlated with membrane potential. We conclude that the integrative properties of dendrites in infragranular neocortical pyramidal cells appear to be linear near resting membrane potential. However, at polarized potentials charge transferred is voltage-dependent with a loss of charge at hyperpolarized and a gain of charge at depolarized potentials.


Endocrinology ◽  
2001 ◽  
Vol 142 (10) ◽  
pp. 4379-4388 ◽  
Author(s):  
Rajaram Gopalakrishnan ◽  
Hongjiao Ouyang ◽  
Martha J. Somerman ◽  
Laurie K. McCauley ◽  
Renny T. Franceschi

Abstract As part of its overall function as a major regulator of calcium homeostasis, PTH stimulates bone resorption and inhibits osteoblast-mediated biomineralization. To determine the basis for the inhibitory actions of this hormone, we compared the time course of PTH-dependent inhibition of mineralization in MC3T3-E1 osteoblast-like cells with changes in mRNA levels for several extracellular matrix proteins previously associated either with induction or inhibition of mineralization. Mineralizing activity was rapidly lost in PTH-treated cells (∼30% inhibition after 3 h, 50% inhibition at 6 h). Of the proteins examined, changes in matrix γ-carboxyglutamic acid protein were best correlated with PTH-dependent inhibition of mineralization. Matrix γ-carboxyglutamic acid protein mRNA was rapidly induced 3 h after PTH treatment, with a 6- to 8-fold induction seen after 6 h. Local in vivo injection of PTH over the calvaria of mice also induced a 2-fold increase in matrix γ-carboxyglutamic acid protein mRNA. Warfarin, an inhibitor of matrix γ-carboxyglutamic acid protein γ-carboxylation, reversed the effects of PTH on mineralization in MC3T3-E1 cells, whereas vitamin K enhanced PTH activity, as would be expected if a γ-carboxyglutamic acid-containing protein were required for PTH activity. Levels of the other mRNAs examined were not well correlated with the observed changes in mineralization. Osteopontin, an in vitro inhibitor of mineralization, was induced approximately 4-fold 12 h after PTH addition. Bone sialoprotein mRNA, which encodes an extracellular matrix component most frequently associated with mineral induction, was inhibited by 50% after 12 h of PTH treatment. Osteocalcin mRNA, encoding the other known γ-carboxyglutamic acid protein in bone, was also inhibited by PTH, but, again, with a significantly slower time course than was seen for mineral inhibition. Taken together, these results show that the rapid inhibition of osteoblast mineralization induced by in vitro PTH treatment is at least in part explained by induction of matrix γ-carboxyglutamic acid protein.


1980 ◽  
Vol 84 (3) ◽  
pp. 381-390 ◽  
Author(s):  
MAKOTO MORI ◽  
SACHIKO MATSUKURA ◽  
KAZUHIKO KAWAKURA ◽  
BUN-ICHI TAMAOKI

When [4–14C]pregnenolone was aerobically incubated in vitro in the presence of NAD+ and NADPH with cell-free homogenates of testicular tissue of adult domestic goats (Capra hircus), progesterone, 17α-hydroxypregnenolone, 17α-hydroxyprogesterone, 17α,20α-dihydroxy-4-pregnen-3-one, dehydroepiandrosterone, androstenedione and testosterone were identified as its known metabolites. Time-course studies on this metabolism showed that the production of 17α,20α-dihydroxy-4-pregnen-3-one and testosterone constantly increased up to the end of incubation, suggesting that these are both end-products of pregnenolone metabolism in this system. The other metabolites behaved as intermediates and were ultimately converted, in part, to testosterone by the testicular homogenates, indicating that testosterone was synthesized through both 4-ene and 5-ene-pathways. Furthermore, besides these metabolites, 5-pregnene-3β,17α,20α-triol was also identified as an intermediary metabolite, formed from pregnenolone through 17α-hydroxypregnenolone in the presence of NADPH, and further convertible into 17α,20α-dihydroxy-4-pregnen-3-one by the microsomal fraction and into 17α-hydroxypregnenolone by the cytosol fraction in the presence of NAD+ and NADP It was not, however, significantly transformed into C19-steroids. Furthermore, 17α,20α-dihydroxy-4-pregnen-3-one, which was formed either from 5-pregnene-3β,17α,20α-triol or from 17α-hydroxyprogesterone, remained almost unchanged without conversion to C19-steroids when incubated with the caprine testicular homogenates.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Thomas Schuetz ◽  
Theresa Dolejsi ◽  
Alexander Bild ◽  
Axel Bauer ◽  
Josef M Penninger ◽  
...  

Introduction: In contrast to other adult tissues myocardium cannot be sufficiently regenerated following significant myocardial infarction (MI). Efficient cardiac regeneration was demonstrated in neonatal mouse myocardial injury models. Similar observations were reported in other neonatal mammals including newborn human babies suffering from MI. The mechanisms of neonatal mammalian cardiac regeneration remain unclear. Here we show the crucial role of IGF1R which was unraveled in a time-course transcriptome analysis of neonatal mouse hearts. Methods: IGF1R was specifically knocked-down (KD) in cardiomyocytes of wildtype postnatal day one (P1) mice using adeno-associated virus (rAAV9) delivered shRNAmirs. KD of Renilla served as control (REN-CTRL). 5x10 13 viral genomes per kg bodyweight were injected intrathoracally. Three batches of rAAV9 with different shRNAmirs were used for the IGF1R-KD groups. Viral transduction was confirmed by bioluminescence imaging on luciferase containing rAAV9 copies and by immunofluorescence staining of rAAV9 delivered GFP reporter. KD efficiency was confirmed in vitro using a retrovirus system and in vivo. On P2 mice underwent either left anterior descending artery (LAD) ligation for induction of MI or SHAM surgery. Cardiac function was subsequently assessed by echocardiography 1 day post injury (dpi) and 21 dpi. Thereafter, hearts were harvested and left ventricular fibrosis was analyzed histologically. Results: LAD ligation resulted in significant MI in both, IGF1R-KD and REN-CTRL, LAD groups as proven by a markedly reduced ejection fraction (EF) 1 dpi. Importantly, 21 dpi IGF1R-KD and REN-CTRL SHAM groups displayed normal cardiac function proving no effect on neonatal cardiac growth and development of only KD of IGF1R without LAD ligation. In contrast, LAD ligation IGF1R-KD mice presented significantly reduced EF 21dpi compared to the other 3 groups. Histological analysis revealed significant fibrosis in the IGF1R-KD LAD hearts compared to the other 3 groups. Conclusions: Whereas IGF1R-KD or control rAAV9 does not alter physiological cardiac development, KD of IGF1R markedly impairs neonatal cardiac regeneration in neonatal mice after MI suggesting a crucial role in neonatal cardiac regeneration.


2001 ◽  
Vol 114 (4) ◽  
pp. 785-795
Author(s):  
T. Tani ◽  
R.D. Allen ◽  
Y. Naitoh

The contractile vacuole of the fresh water protozoan Paramecium is a membrane-bound vesicle that expels excess cytosolic water, acquired osmotically, through its periodic exocytotic activity. The in vitro contractile vacuole, isolated in a small amount of cytosol from the Paramecium cell and confined under mineral oil, showed periodic rounding and slackening at regular intervals for an extended time. The contractile vacuole rounded against the cytosol-mineral oil boundary tension. The tension at the surface of the contractile vacuole is, therefore, assumed to increase during the rounding phase. We first estimated the tension relative to the boundary tension from the degree of compression of the contractile vacuole by the boundary. We then determined the absolute value for the tension at the surface of the contractile vacuole from the degree of bending of an elastic carbon fiber microcantilever (8 microm thick; 2 mm long), whose free end was placed at the surface of an in vitro contractile vacuole. The tension was found to increase to its maximum value of approximately 5 mN m(-)(1) when the contractile vacuole rounded. This value was more than 35 times higher than that for the slackened contractile vacuole. Electron micrographs of conventional thin sections of chemically fixed in vitro contractile vacuoles as well as those of in vivo contractile vacuoles obtained from rapid frozen and cryosubstituted cells revealed the lack of any ultrastructural evidence for the presence of a fibrous network system surrounding the contractile vacuole. Thus we conclude that the mechanism(s) by which tension is developed at the surface of the contractile vacuole membrane resides in the contractile vacuole membrane itself. We propose a hypothesis that periodic changes in the spontaneous curvature of the contractile vacuole's lipid bilayer membrane is involved in the periodic development of higher contractile vacuole membrane tension. The isolated CV promises to be an excellent model system for understanding the molecular mechanisms of the dynamics of biological membrane.


1973 ◽  
Vol 29 (02) ◽  
pp. 490-498 ◽  
Author(s):  
Hiroh Yamazaki ◽  
Itsuro Kobayashi ◽  
Tadahiro Sano ◽  
Takio Shimamoto

SummaryThe authors previously reported a transient decrease in adhesive platelet count and an enhancement of blood coagulability after administration of a small amount of adrenaline (0.1-1 µg per Kg, i. v.) in man and rabbit. In such circumstances, the sensitivity of platelets to aggregation induced by ADP was studied by an optical density method. Five minutes after i. v. injection of 1 µg per Kg of adrenaline in 10 rabbits, intensity of platelet aggregation increased to 115.1 ± 4.9% (mean ± S. E.) by 10∼5 molar, 121.8 ± 7.8% by 3 × 10-6 molar and 129.4 ± 12.8% of the value before the injection by 10”6 molar ADP. The difference was statistically significant (P<0.01-0.05). The above change was not observed in each group of rabbits injected with saline, 1 µg per Kg of 1-noradrenaline or 0.1 and 10 µg per Kg of adrenaline. Also, it was prevented by oral administration of 10 mg per Kg of phenoxybenzamine or propranolol or aspirin or pyridinolcarbamate 3 hours before the challenge. On the other hand, the enhancement of ADP-induced platelet aggregation was not observed in vitro, when 10-5 or 3 × 10-6 molar and 129.4 ± 12.8% of the value before 10∼6 molar ADP was added to citrated platelet rich plasma (CPRP) of rabbit after incubation at 37°C for 30 second with 0.01, 0.1, 1, 10 or 100 µg per ml of adrenaline or noradrenaline. These results suggest an important interaction between endothelial surface and platelets in connection with the enhancement of ADP-induced platelet aggregation by adrenaline in vivo.


1991 ◽  
Vol 66 (05) ◽  
pp. 609-613 ◽  
Author(s):  
I R MacGregor ◽  
J M Ferguson ◽  
L F McLaughlin ◽  
T Burnouf ◽  
C V Prowse

SummaryA non-stasis canine model of thrombogenicity has been used to evaluate batches of high purity factor IX concentrates from 4 manufacturers and a conventional prothrombin complex concentrate (PCC). Platelets, activated partial thromboplastin time (APTT), fibrinogen, fibrin(ogen) degradation products and fibrinopeptide A (FPA) were monitored before and after infusion of concentrate. Changes in FPA were found to be the most sensitive and reproducible indicator of thrombogenicity after infusion of batches of the PCC at doses of between 60 and 180 IU/kg, with a dose related delayed increase in FPA occurring. Total FPA generated after 100-120 IU/kg of 3 batches of PCC over the 3 h time course was 9-12 times that generated after albumin infusion. In contrast the amounts of FPA generated after 200 IU/kg of the 4 high purity factor IX products were in all cases similar to albumin infusion. It was noted that some batches of high purity concentrates had short NAPTTs indicating that current in vitro tests for potential thrombogenicity may be misleading in predicting the effects of these concentrates in vivo.


Sign in / Sign up

Export Citation Format

Share Document