Electrophysiological properties of the tongue epithelium of the toad Bufo marinus

2002 ◽  
Vol 205 (13) ◽  
pp. 1943-1952
Author(s):  
Timothy K. Baker ◽  
Karina Rios ◽  
Stanley D. Hillyard

SUMMARY The dorsal lingual epithelium from the tongue of the toad Bufo marinus was mounted in an Ussing-type chamber, and the short-circuit current (Isc) was measured using a low-noise voltage clamp. With NaCl Ringer bathing the mucosal and serosal surfaces of the isolated tissue, an outwardly directed (mucosa-positive) Isc was measured that averaged -10.71±0.82 μA cm-2 (mean ± S.E.M., N=24) with a resistance of 615±152 Ω cm2 (mean ± S.E.M., N=10). Substitution of chloride with sulfate as the anion produced no significant change in Isc. Fluctuation analysis with either NaCl or Na2SO4 Ringer bathing both sides of the tissue revealed a spontaneous Lorentzian component, suggesting that the Isc was the result of K+ secretion through spontaneously fluctuating channels in the apical membrane of the epithelium. This hypothesis was supported by the reversible inhibition of Isc by Ba2+ added to the mucosal Ringer. Analysis of the kinetics of Ba2+ inhibition of Isc indicates that there might be more than one type of K+ channel carrying the Isc. This hypothesis was supported by power spectra obtained with a serosa-to-mucosa K+gradient, which could be fitted to two Lorentzian components. At present, the K+ secretory current cannot be localized to taste cells or other cells that might be associated with the secretion of saliva or mucus. Nonetheless, the resulting increase in [K+] in fluid bathing the mucosal surface of the tongue could presumably affect the sensitivity of the taste cells. These results contrast with those from the mammalian tongue, in which a mucosa-negative Isc results from amiloride-sensitive Na+ transport.

1990 ◽  
Vol 259 (4) ◽  
pp. L230-L237 ◽  
Author(s):  
B. Illek ◽  
H. Fischer ◽  
W. Clauss

To reveal the regulatory mechanism of the mineralocorticoid aldosterone on basolateral K+ channels, the aldosterone-sensitive lung epithelium of Xenopus laevis was investigated in Ussing chambers under voltage-clamp conditions. Transepithelial measurements were supplemented by current fluctuation analysis of short-circuit current noise in nonstimulated and aldosterone-stimulated lung tissues. The addition of 10(-6) M aldosterone stimulated short-circuit current from 11.3 +/- 2.0 to 27.8 +/- 4.8 microA/cm2 (n = 11) within 4–5 h. In the presence of an alveolar-to-pleural K+ gradient, transepithelial K+ currents were induced by permeabilizing the apical membrane with the pore-forming antibiotic amphotericin B. When the local anesthetic lidocaine (25-1,000 microM) was added to the pleural solution, macroscopic K+ current was dose dependently depressed. Lidocaine induced a Lorentzian component in the power density spectra, and the corner frequency increased linearly with blocker concentration. Aldosterone treatment did not affect mean single K+ channel current, which was 1.5 +/- 0.12 pA corresponding to a 15-pS channel conductance, whereas the number of basolateral K+ channels doubled. We conclude that the basolateral K+ channels in alveolar epithelia are a target site of aldosterone action.


1983 ◽  
Vol 214 (1) ◽  
pp. 29-35 ◽  
Author(s):  
M Geheb ◽  
R Alvis ◽  
E Hercker ◽  
M Cox

We have identified a group of proteins (Mr approximately 70000-80000; pI approximately 5.8-6.4) in giant-toad (Bufo marinus) urinary-bladder epithelial cells whose synthesis appears to be related to aldosterone-stimulated Na+ transport. To define this relationship further, we examined whether submaximal natriferic concentrations of aldosterone induced these proteins and whether spironolactone (a specific mineralocorticoid antagonist in renal epithelia) inhibited their synthesis. Short-circuit current was used to measure Na+ transport and epithelial-cell protein synthesis was detected with high-resolution two-dimensional polyacrylamide-gel electrophoresis and autoradiography. Submaximal natriferic concentrations of aldosterone (1.4 X 10(-8) M) induced the same proteins as maximal concentrations of the hormone (1.4 X 10(-7) M). In contrast, in previous experiments, similar proteins were not induced by subnatriferic concentrations (5.0 X 10(-8) M) of cortisol, a glucocorticoid. A spironolactone/aldosterone molar ratio of 2000:1 was required to inhibit aldosterone-stimulated Na+ transport completely; ratios of 200:1 and 500:1 produced partial inhibition. Concentrations of spironolactone that abolished aldosterone-stimulated Na+ transport also inhibited aldosterone-induced protein synthesis. We conclude that the synthesis of the proteins we have identified is specifically related to activation of the mineralocorticoid pathway.


1992 ◽  
Vol 262 (5) ◽  
pp. C1161-C1166 ◽  
Author(s):  
S. D. Hillyard ◽  
W. Van Driessche

The short-circuit current (Isc) across isolated skin from larval frogs (Rana catesbeiana) was measured when the tissue was bathed with Na2SO4 Ringer solution on the serosal side and with a Ringer solution containing K+ as the primary cation on the mucosal side. When 150 U/ml nystatin was added to the mucosal solution, the Isc increased from 1.4 +/- 0.1 to 35.4 +/- 4.8 microA/cm2. When verapamil was added to the mucosal and serosal Ringer solutions in concentrations between 2.5 and 80 microM, Isc was inhibited in a stepwise manner. At 80 microM, Isc was reduced by 75.3% to 8.74 +/- 1.14 microA/cm2. Analysis of the inhibition of Isc with the direct linear plot method showed that the blockage of Isc could be described by pseudo-first-order kinetics with a Michaelis constant (Km) of 9.59 +/- 2.20 microM. Fluctuation analysis revealed a Lorentzian component in power spectra obtained from preparations treated with 10-80 microM verapamil. The corner frequency of these Lorentzian components increased in a linear manner over this range of verapamil concentrations. The Km calculated from the ratio of the dissociation and association rate constants (k10/k'01) was 39.5 microM. The single-channel currents (i) calculated from the fluctuation analysis parameters decreased significantly between verapamil concentrations of 10 and 80 microM. It appears that the inhibition of K+ channels in the basolateral membrane of this tissue has at least two components.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 137 (1) ◽  
pp. 277-286 ◽  
Author(s):  
D. N. Crawford ◽  
W. R. Harvey

Ba2+ and Ca2+ prevent and reverse the Btk delta-endotoxin inhibition of the short-circuit current in isolated lepidopteran midgut. These findings support the K+ pump-leak steady-state model for midgut K+ homeostasis and the K+ channel mechanism of Bt toxin action. They provide a new tool with which to study the interactions between Bt toxin and midgut cell membranes.


2005 ◽  
Vol 288 (5) ◽  
pp. G956-G963 ◽  
Author(s):  
Kazi Mirajul Hoque ◽  
Vazhaikkurichi M. Rajendran ◽  
Henry J. Binder

Zn, an essential micronutrient and second most abundant trace element in cell and tissues, reduces stool output when administered to children with acute diarrhea. The mechanism by which Zn improves diarrhea is not known but could result from stimulating Na absorption and/or inhibiting anion secretion. The aim of this study was to investigate the direct effect of Zn on intestinal epithelial ion absorption and secretion. Rat ileum was partially stripped of serosal and muscle layers, and the mucosa was mounted in lucite chambers. Potential difference and short-circuit current were measured by conventional current-voltage clamp method.86Rb efflux and uptake were assessed for serosal K channel and Na-K-2Cl cotransport activity, respectively. Efflux experiments were performed in isolated cells preloaded with86Rb in the presence of ouabain and bumetanide, whereas uptake experiments were performed in low-Cl isotonic buffer containing Ba and ouabain. Neither mucosal nor serosal Zn affected glucose-stimulated Na absorption. In contrast, forskolin-induced Cl secretion was markedly reduced by serosal but not mucosal addition of Zn. Zn also substantially reversed the increase in Cl secretion induced by 8-bromoadenosine 3′,5′-cyclic monophosphate (8-BrcAMP) with half-maximal inhibitory concentration of 0.43 mM. In contrast, serosal Zn did not alter Cl secretion stimulated by carbachol, a Ca-dependent agonist. Zn inhibited 8-BrcAMP-stimulated86Rb efflux but not carbachol-stimulated86Rb efflux. Zn had no effect on bumetanide-sensitive86Rb uptake, Na-K-ATPase, or CFTR. We conclude from these studies that Zn inhibits cAMP-induced Cl secretion by blocking basolateral membrane K channels.


1968 ◽  
Vol 49 (1) ◽  
pp. 185-193
Author(s):  
MALCOLM S. GORDON ◽  
VANCE A. TUCKER

1. Total rates of urea loss from adult euryhaline crab-eating frogs (Rana cancrivora) adapted to various environmental salinities between fresh water and 80 % sea water increase as salinity increases above 40% sea water. Oxygen consumption is constant in rate in all salinities studied. 2. The presence of urea in the Ringer solution bathing isolated pieces of skin of frogs adapted to 60% sea water increases both the electrical potential and the inwardly directed short-circuit current across the skin. 3. In skeletal muscle cells addition of intracellular solutes maintains tissue hydration in the face of large increases in plasma osmotic concentration in high-salinity media. Changes in the intracellular urea and free amino acid concentrations are primarily responsible for increases in intracellular osmotic concentration. 4. Some implications of these observations are discussed and comparisons made with the euryhaline green toad, Bufo viridis.


1964 ◽  
Vol 207 (5) ◽  
pp. 1010-1014 ◽  
Author(s):  
José A. Zadunaisky ◽  
Felisa W. De Fisch

Several aspects of chloride passage through isolated amphibian skin were studied. The chloride transport performed by the skin of the frog Leptodactylus ocellatus or the passive chloride fluxes observed in the skin of the toad Bufo arenarum Hensel are not affected by antidiuretic hormone. The chloride transport produces a negative potential and a short-circuit current in sodium-free solutions, though the unidirectional fluxes of chloride are greatly reduced under these conditions. The short-circuit current due to the chloride transport is smaller than the net chloride flux. It was found that this disagreement could be ascribed to a loss of sodium toward the inside from the sodium pool of the skin. Antidiuretic hormone did not affect the chloride current, nor the sodium loss from the skin. The isolated skin of the toad Bufo arenarum Hensel does not transport chloride ions. Thus the active transport of chloride observed in isolated skins of the frog Leptodactylus ocellatus does not depend on environmental conditions, since both animals live in the same surroundings.


1990 ◽  
Vol 259 (4) ◽  
pp. C668-C674 ◽  
Author(s):  
D. J. Wilkinson ◽  
D. C. Dawson

Current fluctuation analysis was used to investigate the properties of apical Na+ channels during muscarinic inhibition of active Na+ absorption. A reversible Na+ channel blocker, 6-chloro-3,5-diaminopyrazine-2-carboxamide (CDPC), was used to induce fluctuations in the short-circuit current (I(sc)). Power density spectra of the CDPC-induced fluctuations exhibited a clearly discernible Lorentzian component, characterized by a corner frequency that was linearly related to CDPC concentration between 20 and 100 microM. The on (k'on) and off (k(off)) rate coefficients for the CDPC blocking reaction were k'on = 11.1 +/- 0.8 rad.s-1.microM-1 and k(off) = 744 +/- 53 rad/s, and the microscopic inhibition constant was 67 microM (n = 11). CDPC blocking kinetics were not significantly different after inhibition of Isc by 5 microM serosal carbachol. Single-channel Na+ current (iNa) and the density of open and blocked Na+ channels (N(ob)) were estimated from the fluctuations induced by 40 microM CDPC. Under control conditions, iNa was 0.43 +/- 0.05 pA and N(ob) was 251 +/- 42 X 10(6)/cm2 (n = 10). After exposure to serosal carbachol (2-10 microM) for 60 min, Na+ current and N(ob) were reduced by approximately 50%, but iNa was not changed significantly. These results indicate that muscarinic inhibition of electrogenic Na+ absorption was associated with a reduction in the number of open Na+ channels in the apical membrane. They also suggest that this downregulation of transport involved a coordinated decrease in both apical and basolateral membrane conductances.


1987 ◽  
Vol 89 (4) ◽  
pp. 563-580 ◽  
Author(s):  
J R Demarest ◽  
A L Finn

Experimental modulation of the apical membrane Na+ conductance or basolateral membrane Na+-K+ pump activity has been shown to result in parallel changes in the basolateral K+ conductance in a number of epithelia. To determine whether modulation of the basolateral K+ conductance would result in parallel changes in apical Na+ conductance and basolateral pump activity, Necturus urinary bladders stripped of serosal muscle and connective tissue were impaled through their basolateral membranes with microelectrodes in experiments that allowed rapid serosal solution changes. Exposure of the basolateral membrane to the K+ channel blockers Ba2+ (0.5 mM/liter), Cs+ (10 mM/liter), or Rb+ (10 mM/liter) increased the basolateral resistance (Rb) by greater than 75% in each case. The increases in Rb were accompanied simultaneously by significant increases in apical resistance (Ra) of greater than 20% and decreases in transepithelial Na+ transport. The increases in Ra, measured as slope resistances, cannot be attributed to nonlinearity of the I-V relationship of the apical membrane, since the measured cell membrane potentials with the K+ channel blockers present were not significantly different from those resulting from increasing serosal K+, a maneuver that did not affect Ra. Thus, blocking the K+ conductance causes a reduction in net Na+ transport by reducing K+ exit from the cell and simultaneously reducing Na+ entry into the cell. Close correlations between the calculated short-circuit current and the apical and basolateral conductances were preserved after the basolateral K+ conductance pathways had been blocked. Thus, the interaction between the basolateral and apical conductances revealed by blocking the basolateral K+ channels is part of a network of feedback relationships that normally serves to maintain cellular homeostasis during changes in the rate of transepithelial Na+ transport.


1966 ◽  
Vol 49 (5) ◽  
pp. 913-924 ◽  
Author(s):  
Arnaldo Lasansky ◽  
Felisa W. de Fisch

A flux chamber was utilized for in vitro studies of a membrane formed by the retinal pigment epithelium and choroid of the eye of the toad (Bufo arenarum and Bufo marinus). A transmembrane potential of 20 to 30 mv was found, the pigment epithelium surface positive with respect to the choroidal surface. Unidirectional fluxes of chloride, sodium, potassium, and calcium were determined in the absence of an electrochemical potential difference. A net transfer of chloride from pigment epithelium to choroid accounted for a major fraction of the mean short-circuit current. A small net flux of sodium from choroid to pigment epithelium was detected in Bufo marinus. In both species of toads, however, about one-third of the mean short-circuit current remained unaccounted for. Manometric determinations of bicarbonate suggested an uptake of this ion at the epithelial surface of the membrane but did not provide evidence of a relationship between this process and the short-circuit current.


Sign in / Sign up

Export Citation Format

Share Document