Gliclazide increases insulin receptor tyrosine phosphorylation but not p38 phosphorylation in insulin-resistant skeletal muscle cells

2002 ◽  
Vol 205 (23) ◽  
pp. 3739-3746 ◽  
Author(s):  
Naresh Kumar ◽  
Chinmoy S. Dey

SUMMARY Sulfonylurea drugs are used in the treatment of type 2 diabetes. The mechanism of action of sulfonylureas is to release insulin from pancreatic cells and they have been proposed to act on insulin-sensitive tissues to enhance glucose uptake. The goal of the present study was to test the hypothesis that gliclazide, a second-generation sulfonylurea, could enhance insulin signaling in insulin-resistant skeletal muscle cells. We demonstrated that gliclazide enhanced insulin-stimulated insulin receptor tyrosine phosphorylation in insulin-resistant skeletal muscle cells. Although insulin receptor substrate-1 tyrosine phosphorylation was unaffected by gliclazide treatment, phosphatidylinositol 3-kinase activity was partially restored by treatment with gliclazide. No increase in 2-deoxyglucose uptake in insulin-resistant cells by treatment with gliclazide was observed. Further investigations into the mitogen-activated protein kinase (MAPK) pathway revealed that insulin-stimulated p38 phosphorylation was impaired, as compared with extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase(JNK), which were phosphorylated normally in insulin-resistant cells. Treatment with gliclazide could not restore p38 phosphorylation in insulin-resistant cells. We propose that gliclazide can regulate part of the insulin signaling in insulin-resistant skeletal muscle, and p38 could be a potential therapeutic target for glucose uptake to treat insulin resistance.

2010 ◽  
Vol 299 (3) ◽  
pp. E402-E412 ◽  
Author(s):  
Clare Stretton ◽  
Ashleigh Evans ◽  
Harinder S. Hundal

Atypical protein kinase C (aPKC) isoforms (λ and ζ) have been implicated in the control of insulin-stimulated glucose uptake in adipose and skeletal muscle, but their precise role in this process remains unclear, especially in light of accumulating evidence showing that, in response to numerous stimuli, including insulin and lipids such as ceramide, activation of aPKCs acts to negatively regulate key insulin-signaling molecules, such as insulin receptor substrate-1 (IRS-1) and protein kinase B (PKB)/cAMP-dependent PKC (Akt). In this study, we have depleted PKCλ in L6 skeletal muscle cells using RNA interference and assessed the effect this has upon insulin action. Muscle cells did not express detectable amounts of PKCζ. Depletion of PKCλ (>95%) had no significant effect on the expression of proteins participating in insulin signaling [i.e., insulin receptor, IRS-1, phosphatidylinositol 3-kinase (PI 3-kinase), PKB, or phosphate and tensin homolog deleted on chromosome 10] or those involved in glucose transport [Akt substrate of 160 kDa, glucose transporter (GLUT)1, or GLUT4]. However, PKCλ-depleted muscle cells exhibited greater activation of PKB/Akt and phosphorylation of its downstream target glycogen synthase kinase 3, in the basal state and displayed greater responsiveness to submaximal doses of insulin with respect to p85-PI 3-kinase/IRS-1 association and PKB activation. The increase in basal and insulin-induced signaling resulted in an associated enhancement of basal and insulin-stimulated glucose transport, both of which were inhibited by the PI 3-kinase inhibitor wortmannin. Additionally, like RNAi-mediated depletion of PKCλ, overexpression of a dominant-negative mutant of PKCζ induced a similar insulin-sensitizing effect on PKB activation. Our findings indicate that aPKCs are likely to play an important role in restraining proximal insulin signaling events but appear dispensable with respect to insulin-stimulated glucose uptake in cultured L6 muscle cells.


Amino Acids ◽  
2014 ◽  
Vol 46 (8) ◽  
pp. 1971-1979 ◽  
Author(s):  
Hui Liu ◽  
Rui Liu ◽  
Yufang Xiong ◽  
Xiang Li ◽  
Xiaolei Wang ◽  
...  

2020 ◽  
Vol 318 (2) ◽  
pp. E173-E183 ◽  
Author(s):  
Ashlin M. Edick ◽  
Olivia Auclair ◽  
Sergio A. Burgos

Growth factor receptor-bound protein 10 (Grb10) is an adaptor protein that binds to the insulin receptor, upon which insulin signaling and action are thought to be inhibited. Grb10 is also a substrate for the mechanistic target of rapamycin complex 1 (mTORC1) that mediates its feedback inhibition on phosphatidylinositide 3-kinase (PI3K)/Akt signaling. To characterize the function of Grb10 and its regulation by mTORC1 in human muscle, primary skeletal muscle cells were isolated from healthy lean young men and then induced to differentiate into myotubes. Knockdown of Grb10 enhanced insulin-induced PI3K/Akt signaling and glucose uptake in myotubes, reinforcing the notion underlying its function as a negative regulator of insulin action in human muscle. The increased insulin responsiveness in Grb10-silenced myotubes was associated with a higher abundance of the insulin receptor. Furthermore, insulin and amino acids independently and additively stimulated phosphorylation of Grb10 at Ser476. However, acute inhibition of mTORC1 with rapamycin blocked Grb10 Ser476 phosphorylation and repressed a negative-feedback loop on PI3K/Akt signaling that increased myotube responsiveness to insulin. Chronic rapamycin treatment reduced Grb10 protein abundance in conjunction with increased insulin receptor protein levels. Based on these findings, we propose that mTORC1 controls PI3K/Akt signaling through modulation of insulin receptor abundance by Grb10. These findings have potential implications for obesity-linked insulin resistance, as well as clinical use of mTORC1 inhibitors.


2008 ◽  
Vol 294 (6) ◽  
pp. E1070-E1077 ◽  
Author(s):  
Henrike Sell ◽  
Kristin Eckardt ◽  
Annika Taube ◽  
Daniel Tews ◽  
Mihaela Gurgui ◽  
...  

Insulin resistance in skeletal muscle is an early event in the development of diabetes, with obesity being one of the major contributing factors. In vitro, conditioned medium (CM) from differentiated human adipocytes impairs insulin signaling in human skeletal muscle cells, but it is not known whether insulin resistance is reversible and which mechanisms may underlie this process. CM induced insulin resistance in human myotubes at the level of insulin-stimulated Akt and GSK-3 phosphorylation. In addition, insulin-resistant skeletal muscle cells exhibit enhanced production of reactive oxygen species and ceramide as well as a downregulation of myogenic transcription factors such as myogenin and MyoD. However, insulin resistance was not paralleled by increased apopotosis. Regeneration of myotubes for 24 or 48 h after induction of insulin resistance restored normal insulin signaling. However, the expression level of myogenin could not be reestablished. In addition to decreasing myogenin expression, CM also decreased the release of IL-6 and IL-8 and increased monocyte chemotactic protein-1 (MCP-1) secretion from skeletal muscle cells. Although regeneration of myotubes reestablished normal secretion of IL-6, the release of IL-8 and MCP-1 remained impaired for 48 h after withdrawal of CM. In conclusion, our data show that insulin resistance in skeletal muscle cells is only partially reversible. Although some characteristic features of insulin-resistant myotubes normalize in parallel to insulin signaling after withdrawal of CM, others such as IL-8 and MCP-1 secretion and myogenin expression remain impaired over a longer period. Thus, we propose that the induction of insulin resistance may cause irreversible changes of protein expression and secretion in skeletal muscle cells.


2015 ◽  
Vol 54 (3) ◽  
pp. 251-262 ◽  
Author(s):  
Jung Ok Lee ◽  
Nami Kim ◽  
Hye Jeong Lee ◽  
Yong Woo Lee ◽  
Joong Kwan Kim ◽  
...  

Visfatin is a novel adipocytokine produced by visceral fat. In the present study, visfatin increased AMP-activated protein kinase (AMPK) phosphorylation in mouse C2C12 skeletal muscle cells. It also increased phosphorylation of the insulin receptor, whose knockdown blocked visfatin-induced AMPK phosphorylation and glucose uptake. Visfatin stimulated glucose uptake in differentiated skeletal muscle cells. However, inhibition of AMPKα2 with an inhibitor or with knockdown of AMPKα2 using siRNA blocked visfatin-induced glucose uptake, which indicates that visfatin stimulates glucose uptake through the AMPKα2 pathway. Visfatin increased the intracellular Ca2+concentration. STO-609, a calmodulin-dependent protein kinase kinase inhibitor, blocked visfatin-induced AMPK phosphorylation and glucose uptake. Visfatin-mediated activation of p38 MAPK was AMPKα2-dependent. Furthermore, both inhibition and knockdown of p38 MAPK blocked visfatin-induced glucose uptake. Visfatin increased glucose transporter type 4 (GLUT4) mRNA and protein levels. In addition, visfatin stimulated the translocation of GLUT4 to the plasma membrane, and this effect was suppressed by AMPKα2 inhibition. The present results indicate that visfatin plays an important role in glucose metabolism via the Ca2+-mediated AMPK–p38 MAPK pathway.


Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 663 ◽  
Author(s):  
Shaghayegh Norouzi ◽  
John Adulcikas ◽  
Darren Henstridge ◽  
Sabrina Sonda ◽  
Sukhwinder Sohal ◽  
...  

Background: The zinc transporter Zip7 modulates zinc flux and controls cell signaling molecules associated with glucose metabolism in skeletal muscle. The present study evaluated the role of Zip7 in cell signaling pathways involved in insulin-resistant skeletal muscle and mice fed a high-fat diet. Methods: Insulin-resistant skeletal muscle cells were prepared by treatment with an inhibitor of the insulin receptor, HNMPA-(AM)3 or palmitate, and Zip7 was analyzed along with pAkt, pTyrosine and Glut4. Similarly, mice fed normal chow (NC) or a high-fat diet (HFD) were also analyzed for protein expression of Glut4 and Zip7. An overexpression system for Zip7 was utilized to determine the action of this zinc transporter on several genes implicated in insulin signaling and glucose control. Results: We identified that Zip7 is upregulated by glucose in normal skeletal muscle cells and downregulated in insulin-resistant skeletal muscle. We also observed (as expected) a decrease in pAkt and Glut4 in the insulin-resistant skeletal muscle cells. The overexpression of Zip7 in skeletal muscle cells led to the modulation of key genes involved in the insulin signaling axis and glucose metabolism including Akt3, Dok2, Fos, Hras, Kras, Nos2, Pck2, and Pparg. In an in vivo mouse model, we identified a reduction in Glut4 and Zip7 in the skeletal muscle of mice fed a HFD compared to NC controls. Conclusions: These data suggest that Zip7 plays a role in skeletal muscle insulin signaling and is downregulated in an insulin-resistant, and HFD state. Understanding the molecular mechanisms of Zip7 action will provide novel opportunities to target this transporter therapeutically for the treatment of insulin resistance and type 2 diabetes.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3129
Author(s):  
Jyotsana Pandey ◽  
Kapil Dev ◽  
Sourav Chattopadhyay ◽  
Sleman Kadan ◽  
Tanuj Sharma ◽  
...  

Estrogenic molecules have been reported to regulate glucose homeostasis and may be beneficial for diabetes management. Here, we investigated the estrogenic effect of β-sitosterol-3-O-D-glucopyranoside (BSD), isolated from the fruits of Cupressus sempervirens and monitored its ability to regulate glucose utilization in skeletal muscle cells. BSD stimulated ERE-mediated luciferase activity in both ERα and ERβ-ERE luc expression system with greater response through ERβ in HEK-293T cells, and induced the expression of estrogen-regulated genes in estrogen responsive MCF-7 cells. In silico docking and molecular interaction studies revealed the affinity and interaction of BSD with ERβ through hydrophobic interaction and hydrogen bond pairing. Furthermore, prolonged exposure of L6-GLUT4myc myotubes to BSD raised the glucose uptake under basal conditions without affecting the insulin-stimulated glucose uptake, the effect associated with enhanced translocation of GLUT4 to the cell periphery. The BSD-mediated biological response to increase GLUT4 translocation was obliterated by PI-3-K inhibitor wortmannin, and BSD significantly increased the phosphorylation of AKT (Ser-473). Moreover, BSD-induced GLUT4 translocation was prevented in the presence of fulvestrant. Our findings reveal the estrogenic activity of BSD to stimulate glucose utilization in skeletal muscle cells via PI-3K/AKT-dependent mechanism.


Sign in / Sign up

Export Citation Format

Share Document