scholarly journals Small heat shock protein Hsp67Bc plays a significant role in Drosophila melanogaster cold stress tolerance

2020 ◽  
Vol 223 (21) ◽  
pp. jeb219592
Author(s):  
Dina Malkeyeva ◽  
Elena Kiseleva ◽  
Svetlana Fedorova

ABSTRACTHsp67Bc in Drosophila melanogaster is a member of the small heat shock protein family, the main function of which is to prevent the aggregation of misfolded or damaged proteins. Hsp67Bc interacts with Starvin and Hsp23, which are known to be a part of the cold stress response in the fly during the recovery phase. In this study, we investigated the role of the Hsp67Bc gene in the cold stress response. We showed that in adult Drosophila, Hsp67Bc expression increases after cold stress and decreases after 1.5 h of recovery, indicating the involvement of Hsp67Bc in short-term stress recovery. We also implemented a deletion in the D. melanogaster Hsp67Bc gene using imprecise excision of a P-element, and analysed the cold tolerance of Hsp67Bc-null mutants at different developmental stages. We found that Hsp67Bc-null homozygous flies are viable and fertile but display varying cold stress tolerance throughout the stages of ontogenesis: the survival after cold stress is slightly impaired in late third instar larvae, unaffected in pupae, and notably affected in adult females. Moreover, the recovery from chill coma is delayed in Hsp67Bc-null adults of both sexes. In addition, the deletion in the Hsp67Bc gene caused more prominent up-regulation of Hsp70 following cold stress, suggesting the involvement of Hsp70 in compensation of the lack of the Hsp67Bc protein. Taken together, our results suggest that Hsp67Bc is involved in the recovery of flies from a comatose state and contributes to the protection of the fruit fly from cold stress.

1989 ◽  
Vol 9 (1) ◽  
pp. 332-335 ◽  
Author(s):  
S E Kelly ◽  
I L Cartwright

Alterations in the pattern of DNase I hypersensitivity were observed on ecdysterone-stimulated transcription of Drosophila melanogaster small heat shock protein genes. Perturbations were induced near hsp27 and hsp22, coupled with an extensive domain of chromatin unfolding in the intergenic region between hsp23 and the developmentally regulated gene 1. These regions represent candidates for ecdysterone regulatory interactions.


2019 ◽  
Vol 97 (4) ◽  
pp. 471-479
Author(s):  
Hajer Salem Malitan ◽  
Alejandro M. Cohen ◽  
Thomas H. MacRae

Embryos of the crustacean Artemia franciscana may arrest as gastrulae, forming cysts that enter diapause, which is a state of reduced metabolism and enhanced stress tolerance. Diapausing cysts survive physiological stresses for years due, in part, to molecular chaperones. p26, a small heat-shock protein, is an abundant diapause-specific molecular chaperone in cysts, and it affects embryo development and stress tolerance. p26 is therefore thought to influence many proteins in cysts, and this study was undertaken to determine how the loss of p26 by RNA interference (RNAi) affects the diapause proteome of A. franciscana. The proteome was analyzed by shot-gun proteomics coupled to differential isotopic labeling and tandem mass spectrometry. Proteins in the diapause proteome included metabolic enzymes, antioxidants, binding proteins, structural proteins, transporters, translation factors, receptors, and signal transducers. Proteins within the diapause proteome either disappeared or were reduced in amount when p26 was knocked down, or conversely, proteins appeared or increased in amount. Those proteins that disappeared may be p26 substrates, whereas the synthesis of those proteins that appeared or increased may be regulated by p26. This study provides the first global characterization of the diapause proteome of A. franciscana and demonstrates that the sHsp p26 influences proteome composition.


1999 ◽  
Vol 120 (2) ◽  
pp. 521-528 ◽  
Author(s):  
Alvaro Soto ◽  
Isabel Allona ◽  
Carmen Collada ◽  
Maria-Angeles Guevara ◽  
Rosa Casado ◽  
...  

1989 ◽  
Vol 9 (1) ◽  
pp. 332-335
Author(s):  
S E Kelly ◽  
I L Cartwright

Alterations in the pattern of DNase I hypersensitivity were observed on ecdysterone-stimulated transcription of Drosophila melanogaster small heat shock protein genes. Perturbations were induced near hsp27 and hsp22, coupled with an extensive domain of chromatin unfolding in the intergenic region between hsp23 and the developmentally regulated gene 1. These regions represent candidates for ecdysterone regulatory interactions.


Sign in / Sign up

Export Citation Format

Share Document