heat and cold stress
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 36)

H-INDEX

17
(FIVE YEARS 3)

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12654
Author(s):  
Qiangqiang Ding ◽  
Hongyuan Zhao ◽  
Peilei Zhu ◽  
Xiangting Jiang ◽  
Fan Nie ◽  
...  

The C2H2-type zinc finger proteins (C2H2-ZFPs) regulate various developmental processes and abiotic stress responses in eukaryotes. Yet, a comprehensive analysis of these transcription factors which could be used to find candidate genes related to the control the development and abiotic stress tolerance has not been performed in Pleurotus ostreatus. To fill this knowledge gap, 18 C2H2-ZFs were identified in the P. ostreatus genome. Phylogenetic analysis indicated that these proteins have dissimilar amino acid sequences. In addition, these proteins had variable protein characteristics, gene intron-exon structures, and motif compositions. The expression patterns of PoC2H2-ZFs in mycelia, primordia, and young and mature fruiting bodies were investigated using qRT-PCR. The expression of some PoC2H2-ZFs is regulated by auxin and cytokinin. Moreover, members of PoC2H2-ZFs expression levels are changed dramatically under heat and cold stress, suggesting that these genes may participate in abiotic stress responses. These findings could be used to study the role of P. ostreatus-derived C2H2-ZFs in development and stress tolerance.


Plant Gene ◽  
2022 ◽  
pp. 100351
Author(s):  
Neha Verma ◽  
Shiv Kumar Giri ◽  
Gulab Singh ◽  
Ritu Gill ◽  
Anil Kumar

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3472
Author(s):  
Daniel Mota-Rojas ◽  
Cristiane Gonçalves Titto ◽  
Ana de Mira Geraldo ◽  
Julio Martínez-Burnes ◽  
Jocelyn Gómez ◽  
...  

The objective of this review is to describe and analyze the effect of feathers, hair, and glabrous (hairless) skin on the thermoregulation of domestic and endotherm animals, especially concerning the uses and scope of infrared thermography (IRT), scientific findings on heat and cold stress, and differences among species of domestic animals. Clinical medicine considers thermoregulation a mechanism that allows animals to adapt to varying thermal environmental conditions, a process in which the presence of feathers, hair, or glabrous skin influences heat loss or heat retention, respectively, under hot and cold environmental conditions. Evaluating body temperature provides vital information on an individual’s physiological state and health status since variations in euthermia maintenance in vertebrates reflect a significant cellular metabolism deviation that needs to be assessed and quantified. IRT is a non-invasive tool for evaluating thermal responses under thermal stress conditions in animals, where the presence or absence of feathers, hair, and glabrous skin can affect readings and the differences detected. Therefore, anatomical regions, the characteristics of feathers, hair, glabrous skin such as structure, length, color, and extension, and strategies for dissipating or retaining heat together constitute a broad area of opportunity for future research into the phenomena of dermal thermoregulation in domestic species.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1718
Author(s):  
Konstantinos Tegopoulos ◽  
Odysseas Sotirios Stergiou ◽  
Despoina Eugenia Kiousi ◽  
Margaritis Tsifintaris ◽  
Ellie Koletsou ◽  
...  

Lactiplantibacillus plantarum is a diverse species that includes nomadic strains isolated from a variety of environmental niches. Several L. plantarum strains are being incorporated in fermented foodstuffs as starter cultures, while some of them have also been characterized as probiotics. In this study, we present the draft genome sequence of L. plantarum L125, a potential probiotic strain presenting biotechnological interest, originally isolated from a traditional fermented meat product. Phylogenetic and comparative genomic analysis with other potential probiotic L. plantarum strains were performed to determine its evolutionary relationships. Furthermore, we located genes involved in the probiotic phenotype by whole genome annotation. Indeed, genes coding for proteins mediating host–microbe interactions and bile salt, heat and cold stress tolerance were identified. Concerning the potential health-promoting attributes of the novel strain, we determined that L. plantarum L125 carries an incomplete plantaricin gene cluster, in agreement with previous in vitro findings, where no bacteriocin-like activity was detected. Moreover, we showed that cell-free culture supernatant (CFCS) of L. plantarum L125 exerts anti-proliferative, anti-clonogenic and anti-migration activity against the human colon adenocarcinoma cell line, HT-29. Conclusively, L. plantarum L125 presents desirable probiotic traits. Future studies will elucidate further its biological and health-related properties.


2021 ◽  
Vol 2 ◽  
Author(s):  
Fisayo Akinyemi ◽  
Deborah Adewole

Environmental stressors can promote the vulnerability of animals to infections; it is therefore, essential to understand how stressors affect the immune system, the adaptive capacity of animals to respond, and effective techniques in managing stress. This review highlights scientific evidence regarding environmental stress challenge models and the potential effectiveness of vitamin supplementation. The major environmental stressors discussed are heat and cold stress, feed restriction, stocking density, and pollutants. Much work has been done to identify the effects of environmental stress in broilers and layers, while few involved other types of poultry. Studies indicated that chickens' performance, health, and welfare are compromised when challenged with environmental stress. These stressors result in physiological alterations, behavioral changes, decreased egg and meat quality, tissue and intestinal damage, and high mortalities. The application of vitamins with other nutritional approaches can help in combating these environmental stressors in chickens. Poultry birds do not synthesize sufficient vitamins during stressful periods. It is therefore suggested that chicken diets are supplemented with vitamins when subjected to environmental stress. Combination of vitamins are considered more efficient than the use of individual vitamins in alleviating environmental stress in chickens.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255381
Author(s):  
Alison McAfee ◽  
David R. Tarpy ◽  
Leonard J. Foster

Extreme temperature exposure can reduce stored sperm viability within queen honey bees; however, little is known about how thermal stress may directly impact queen performance or other maternal quality metrics. Here, in a blind field trial, we recorded laying pattern, queen mass, and average callow worker mass before and after exposing queens to a cold temperature (4°C, 2 h), hot temperature (42°C, 2 h), and hive temperature (33°C, control). We measured sperm viability at experiment termination, and investigated potential vertical effects of maternal temperature stress on embryos using proteomics. We found that cold stress, but not heat stress, reduced stored sperm viability; however, we found no significant effect of temperature stress on any other recorded metrics (queen mass, average callow worker mass, laying patterns, the egg proteome, and queen spermathecal fluid proteome). Previously determined candidate heat and cold stress biomarkers were not differentially expressed in stressed queens, indicating that these markers only have short-term post-stress diagnostic utility. Combined with variable sperm viability responses to temperature stress reported in different studies, these data also suggest that there is substantial variation in temperature tolerance, with respect to impacts on fertility, amongst queens. Future research should aim to quantify the variation and heritability of temperature tolerance, particularly heat, in different populations of queens in an effort to promote queen resilience.


Author(s):  
Luis Gutiérrez-Pesquera ◽  
Miguel Tejedo ◽  
Agustin Camacho ◽  
Urtzi Enríquez-Urzelai ◽  
Marco Katzenberger ◽  
...  

Critical thermal limits (CTmax and CTmin) are predicted to decrease with elevation, with greater change in CTmin, and the risk to suffer heat and cold stress increasing at the gradient ends. A central prediction is that populations will adapt to the prevailing climatic conditions. Yet, reliable support for such expectation is scant because of the complexity of integrating phenotypic and molecular divergence. We propose that phenotypic plasticity and breeding phenology may hinder local adaptation cancelling the appearance of adaptive patterns. We examined intraspecific variation of CTmax/CTmin in 11 populations of an amphibian across an elevational gradient, and assessed (1) the existence of local adaptation through a PST-FST comparison, (2) the acclimation scope in both thermal limits, and (3) the vulnerability to suffer acute heat (CTmax–tmax) and cold (tmin–CTmin) thermal stress, measured at both macro- and microclimatic scales. Our study revealed significant microgeographic variation in CTmax/CTmin, and unexpected elevation gradients in pond temperatures. However, variation in CTmax/CTmin could not be attributed to selection because critical thermal limits were not correlated to elevation or temperatures. Differences in breeding phenology among populations resulted in exposure to higher and more variable temperatures at mid and high elevations. Accordingly, mid- and high-elevation populations had higher CTmax and CTmin plasticities than lowland populations, but not more extreme CTmax/CTmin. Thus, we confirm our prediction that plasticity and phenological shifts may hinder local adaptation, promoting thermal niche conservatism and a higher vulnerability to climate change. This contradicts some of the existing predictions on adaptive thermal clines.


2021 ◽  
Vol 22 (13) ◽  
pp. 6731
Author(s):  
Muthusamy Muthusamy ◽  
Jong-Hee Kim ◽  
Jin A Kim ◽  
Soo-In Lee

Plant abiotic stress responses are tightly regulated by different players at multiple levels. At transcriptional or post-transcriptional levels, several RNA binding proteins (RBPs) regulate stress response genes through RNA metabolism. They are increasingly recognized as critical modulators of a myriad of biological processes, including stress responses. Plant RBPs are heterogeneous with one or more conservative RNA motifs that constitute canonical/novel RNA binding domains (RBDs), which can bind to target RNAs to determine their regulation as per the plant requirements at given environmental conditions. Given its biological significance and possible consideration as a potential tool in genetic manipulation programs to improve key agronomic traits amidst frequent episodes of climate anomalies, studies concerning the identification and functional characterization of RBP candidate genes are steadily mounting. This paper presents a comprehensive overview of canonical and novel RBPs and their functions in major abiotic stresses including drought, heat, salt, and cold stress conditions. To some extent, we also briefly describe the basic motif structure of RBPs that would be useful in forthcoming studies. Additionally, we also collected RBP genes that were modulated by stress, but that lacked functional characterization, providing an impetus to conduct further research.


2021 ◽  
Author(s):  
Nadia Politi ◽  
Diamando Vlachogiannis ◽  
Athanasios Sfetsos ◽  
Iason Markantonis

<p>Climate change will exert a considerable influence across the area of Greece with temperature and precipitation extreme events becoming more frequent creating significant impacts on many societal and economic sectors. Future projections based on a range of anthropogenic scenarios show that decreases of annual rainfall amounts associated with increases of heat-waves and droughts are anticipated in several regions of Greece. Τhe Weather Research and Forecasting (WRF) model has appropriately been set-up and parameterized with a high spatial resolution of 5 km for the area of Greece. Previous research has revealed the capability of the configured WRF high resolution model to reproduce the main climatological variables in this region, which is dominated by highly variable topographic characteristics. The scope of this study is to investigate climate change projections for indices that express human‐perceived temperature extremes such as the Humidity index (Humidex), Wind Chill index (WCI) and Heat stress index (HI) in order to evaluate the potential impact on human health. These indices use different meteorological variables or a combination of them such as temperature, relative humidity and wind speed. The computation of these indices is based on daily simulated data, under two different scenarios (RCP4.5 and RCP 8.5) and periods (2025-2049 and 2075-2099) compared to present climate conditions (1980-2004). Downscaled results are derived from the global EC-EARTH model dataset, used for initial and boundary conditions. Our findings contribute to the quantification of future changes as well as on the identification of potential areas that might become prone to different degrees of heat/cold stress over the area of Greece.</p>


Sign in / Sign up

Export Citation Format

Share Document