scholarly journals Adolescent prairie voles practice parenting

2021 ◽  
Vol 224 (23) ◽  
Author(s):  
Gina Mantica
Keyword(s):  
BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Joel A. Tripp ◽  
Alejandro Berrio ◽  
Lisa A. McGraw ◽  
Mikhail V. Matz ◽  
Jamie K. Davis ◽  
...  

Abstract Background Pair bonding with a reproductive partner is rare among mammals but is an important feature of human social behavior. Decades of research on monogamous prairie voles (Microtus ochrogaster), along with comparative studies using the related non-bonding meadow vole (M. pennsylvanicus), have revealed many of the neural and molecular mechanisms necessary for pair-bond formation in that species. However, these studies have largely focused on just a few neuromodulatory systems. To test the hypothesis that neural gene expression differences underlie differential capacities to bond, we performed RNA-sequencing on tissue from three brain regions important for bonding and other social behaviors across bond-forming prairie voles and non-bonding meadow voles. We examined gene expression in the amygdala, hypothalamus, and combined ventral pallidum/nucleus accumbens in virgins and at three time points after mating to understand species differences in gene expression at baseline, in response to mating, and during bond formation. Results We first identified species and brain region as the factors most strongly associated with gene expression in our samples. Next, we found gene categories related to cell structure, translation, and metabolism that differed in expression across species in virgins, as well as categories associated with cell structure, synaptic and neuroendocrine signaling, and transcription and translation that varied among the focal regions in our study. Additionally, we identified genes that were differentially expressed across species after mating in each of our regions of interest. These include genes involved in regulating transcription, neuron structure, and synaptic plasticity. Finally, we identified modules of co-regulated genes that were strongly correlated with brain region in both species, and modules that were correlated with post-mating time points in prairie voles but not meadow voles. Conclusions These results reinforce the importance of pre-mating differences that confer the ability to form pair bonds in prairie voles but not promiscuous species such as meadow voles. Gene ontology analysis supports the hypothesis that pair-bond formation involves transcriptional regulation, and changes in neuronal structure. Together, our results expand knowledge of the genes involved in the pair bonding process and open new avenues of research in the molecular mechanisms of bond formation.


Neuroscience ◽  
2018 ◽  
Vol 369 ◽  
pp. 292-302 ◽  
Author(s):  
C.D. Guoynes ◽  
T.C. Simmons ◽  
G.M. Downing ◽  
S. Jacob ◽  
M. Solomon ◽  
...  

Mammalia ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Brian Keane ◽  
Phillip J. Long ◽  
Yasmeen Fleifil ◽  
Nancy G. Solomon

AbstractBehavioral changes that reduce the risk of predation in response to predator-derived odor cues are widespread among mammalian taxa and have received a great deal of attention. Although voles of the genus Microtus are staples in the diet of many mammalian predators, including domestic cats (Felis catus), there are no previous studies on vole space utilization and activity levels in response to odor cues from domestic cats. Therefore, the objective of our study was to investigate responses of adult prairie voles (Microtus ochrogaster) living in semi-natural habitats to odor cues from domestic cat excreta. Contrary to expectations, neither adult males or females showed significant changes in space use or willingness to enter traps in response to cat odors. One hypothesis to explain our results are that prairie voles have not co-evolved with domestic cats long enough to respond to their odors. Other possible explanations include whether levels of odors in the environment were sufficient to trigger a response or that the perceived risk of predation from odor cues alone did not outweigh relative costs of changing space use and activity levels. Future studies should consider multiple factors when determining what cues are sufficient to elicit antipredatory behavior.


2001 ◽  
Vol 433 (4) ◽  
pp. 499-514 ◽  
Author(s):  
Yan Liu ◽  
Christie D. Fowler ◽  
Larry J. Young ◽  
Qiao Yan ◽  
Thomas R. Insel ◽  
...  

1995 ◽  
Vol 100 (1) ◽  
pp. 92-95 ◽  
Author(s):  
Christopher A. Moffatt ◽  
Jonathan M. Gerber ◽  
Joan M.C. Blom ◽  
Lance J. Kriegsfeld ◽  
Randy J. Nelson

1965 ◽  
Vol 46 (3) ◽  
pp. 514-514
Author(s):  
L. L. Getz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document