scholarly journals Comparative neurotranscriptomics reveal widespread species differences associated with bonding

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Joel A. Tripp ◽  
Alejandro Berrio ◽  
Lisa A. McGraw ◽  
Mikhail V. Matz ◽  
Jamie K. Davis ◽  
...  

Abstract Background Pair bonding with a reproductive partner is rare among mammals but is an important feature of human social behavior. Decades of research on monogamous prairie voles (Microtus ochrogaster), along with comparative studies using the related non-bonding meadow vole (M. pennsylvanicus), have revealed many of the neural and molecular mechanisms necessary for pair-bond formation in that species. However, these studies have largely focused on just a few neuromodulatory systems. To test the hypothesis that neural gene expression differences underlie differential capacities to bond, we performed RNA-sequencing on tissue from three brain regions important for bonding and other social behaviors across bond-forming prairie voles and non-bonding meadow voles. We examined gene expression in the amygdala, hypothalamus, and combined ventral pallidum/nucleus accumbens in virgins and at three time points after mating to understand species differences in gene expression at baseline, in response to mating, and during bond formation. Results We first identified species and brain region as the factors most strongly associated with gene expression in our samples. Next, we found gene categories related to cell structure, translation, and metabolism that differed in expression across species in virgins, as well as categories associated with cell structure, synaptic and neuroendocrine signaling, and transcription and translation that varied among the focal regions in our study. Additionally, we identified genes that were differentially expressed across species after mating in each of our regions of interest. These include genes involved in regulating transcription, neuron structure, and synaptic plasticity. Finally, we identified modules of co-regulated genes that were strongly correlated with brain region in both species, and modules that were correlated with post-mating time points in prairie voles but not meadow voles. Conclusions These results reinforce the importance of pre-mating differences that confer the ability to form pair bonds in prairie voles but not promiscuous species such as meadow voles. Gene ontology analysis supports the hypothesis that pair-bond formation involves transcriptional regulation, and changes in neuronal structure. Together, our results expand knowledge of the genes involved in the pair bonding process and open new avenues of research in the molecular mechanisms of bond formation.

2020 ◽  
Author(s):  
Joel A Tripp ◽  
Alejandro Berrio ◽  
Lisa A McGraw ◽  
Mikhail Matz ◽  
Jamie K Davis ◽  
...  

AbstractBackgroundPair bonding with a reproductive partner is rare among mammals but is an important feature of human social behavior. Decades of research on monogamous prairie voles (Microtus ochrogaster), along with comparative studies using the related non-bonding meadow vole (M. pennsylvanicus), have revealed many of the neural and molecular mechanisms necessary for pair-bond formation in that species. However, these studies have largely focused on just a few neuromodulatory systems. To test the hypothesis that neural gene expression differences underlie differential capacities to bond, we performed RNA-sequencing on tissue from three brain regions important for bonding and other social behaviors across bond-forming prairie voles and non-bonding meadow voles. We examined gene expression in the amygdala, hypothalamus, and combined ventral pallidum/nucleus accumbens in virgins and at three time points after mating to understand species differences in gene expression at baseline, in response to mating, and during bond formation.ResultsWe first identified species and brain region as the factors most strongly associated with gene expression in our samples. Next, we found gene categories related to cell structure, translation and metabolism that differed in expression across species in virgins, as well as categories associated with cell structure, synaptic and neuroendocrine signaling, and transcription and translation that varied among the focal regions in our study. Additionally, we identified genes that were differentially expressed across species after mating in each of our regions of interest. These include genes involved in regulating transcription, neuron structure, and synaptic plasticity. Finally, we identified modules of co-regulated genes that were strongly correlated with brain region in both species, and modules that were correlated with post-mating time points in prairie voles but not meadow voles.ConclusionsThese results reinforce the importance of pre-mating differences that confer the ability to form pair bonds in prairie voles but not promiscuous species such as meadow voles. Gene ontology analysis supports the hypothesis that pair-bond formation involves transcriptional regulation, and changes in neuronal structure. Together, our results expand knowledge of the genes involved in the pair bonding process and open new avenues of research in the molecular mechanisms of bond formation.


2008 ◽  
Vol 139 (2_suppl) ◽  
pp. P189-P189
Author(s):  
Tsunehisa Ohno ◽  
Lesley C. French ◽  
Bernard Rousseau

Problem The authors investigated the expression of key extracellular matrix genes after vocal fold wounding in a rat model to better understand the reparative mechanisms of tissue repair during the remodeling phase of vocal fold injury. Methods Bilateral vocal fold wounds were created in 30 rats. Injured vocal fold specimens were harvested 1, 3, 7, 14, 28, and 56 days after wounding. 5 unwounded rats were used to establish baseline for polymerase chain reaction (PCR). The authors used real-time PCR to quantify messenger RNA expression of procollagen type I, III, interleukin-1 beta (IL-1 beta), decorin, and hyaluronan synthase (HAS) −1, −2, and −3. Analysis of variance was used to detect main effects for gene expression. Post-hoc tests were used to make comparisons between time points. Results Procollagen type I expression was decreased from baseline on post-injury day 1, 28, and 56. Procollagen type III was decreased on post-injury day 1 and 56, and increased from baseline on post-injury day 14. IL-1 beta expression was increased from baseline on post-injury day 1, 3, and 7. Decorin expression was decreased from baseline on post-injury day 1, 3, 7, and 56. HAS-1 expression was decreased from baseline at all post-injury time points. HAS-2 expression was increased from baseline on post-injury day 3, and decreased from baseline on post-injury day 14, 28, and 56. HAS-3 expression was decreased from baseline on post-injury day 1, 28, and 56. Conclusion Findings provide temporal changes in the expression of key extracellular matrix genes during a remodeling phase of vocal fold injury in a rat wound model. Significance Vocal fold wound models provide a means for investigating tissue reparative processes and molecular mechanisms controlling synthesis and degradation of the vocal fold extracellular matrix. Support Vanderbilt University Medical Center.


Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 460 ◽  
Author(s):  
Agata Grzybkowska ◽  
Katarzyna Anczykowska ◽  
Wojciech Ratkowski ◽  
Piotr Aschenbrenner ◽  
Jędrzej Antosiewicz ◽  
...  

Iron is essential for physical activity due to its role in energy production pathways and oxygen transportation via hemoglobin and myoglobin. Changes in iron-related biochemical parameters after physical exercise in athletes are of substantial research interest, but molecular mechanisms such as gene expression are still rarely tested in sports. In this paper, we evaluated the mRNA levels of genes related to iron metabolism (PCBP1, PCBP2, FTL, FTH, and TFRC) in leukocytes of 24 amateur runners at four time points: before, immediately after, 3 h after, and 24 h after a marathon. We measured blood morphology as well as serum concentrations of iron, ferritin, and C-reactive protein (CRP). Our results showed significant changes in gene expression (except for TFRC), serum iron, CRP, and morphology after the marathon. However, the alterations in mRNA and protein levels occurred at different time points (immediately and 3 h post-run, respectively). The levels of circulating ferritin remained stable, whereas the number of transcripts in leukocytes differed significantly. We also showed that running pace might influence mRNA expression. Our results indicated that changes in the mRNA of genes involved in iron metabolism occurred independently of serum iron and ferritin concentrations.


1999 ◽  
Vol 22 (1) ◽  
pp. 1-8 ◽  
Author(s):  
PR Holden ◽  
JD Tugwood

Peroxisome proliferators (PPs) are chemicals of industrial and pharmaceutical importance that elicit liver carcinogenesis by a non-genotoxic mechanism. One of the intriguing properties of PPs is that the pleiotropic effects of these compounds (including increased DNA synthesis and peroxisome proliferation) are seen in rats and mice only, but not humans. It is important to determine the risks to humans of environmental and therapeutic exposure to these compounds by understanding the mechanisms of non-genotoxic hepatocarcinogenesis in rodents. To understand this apparent lack of human susceptibility, attention has focused on the peroxisome proliferator-activated receptor alpha (PPARalpha), which appears to mediate the effects of PPs in rodents. It is also known to mediate the hypolipidaemic effects that fibrate drugs exert on humans with elevated plasma cholesterol and triglyceride levels. Human PPARalphas share many functional characteristics with the rodent receptors, in that they can be transcriptionally activated by PPs and regulate specific gene expression. However, one key difference is that PPARalpha is less abundant in human than in rodent liver, which has led to the suggestion that species differences result from quantitative differences in gene expression. In this review we describe the effects of PPs and what is known of the molecular mechanisms of action and species differences with respect to rodents and man. Attention will be given to differences in the amounts of PPARalpha between species as well as the 'qualitative' aspects of PPARalpha-mediated gene regulation which might also explain the activation of some genes and not of others in human liver by PPs.


1998 ◽  
Vol 76 (7) ◽  
pp. 1394-1398 ◽  
Author(s):  
Sabra L Klein ◽  
Randy J Nelson

Males generally display reduced immune responses and greater susceptibility to disease than females, possibly reflecting the suppressive effects of androgens on the immune system. It is presumed that this androgenic effect on immune function is more pronounced among polygynous than monogamous species because concentrations of circulating androgens are generally higher among polygynous than monogamous males. The present study examined sex and species differences in cell-mediated immunity of two Microtus species. Cell-mediated immunity was assessed among individually housed polygynous meadow voles (M. pennsylvanicus) and monogamous prairie voles (M. ochrogaster) by examining the proliferative responses of splenocytes to the T-cell mitogen concanavalin A (Con A) and the B-cell mitogen lipopolysaccharide (LPS). Neither sex nor species differences were observed in response to stimulation with Con A. In contrast, meadow voles exhibited higher proliferative responses to LPS than prairie voles. Sex differences in immune function were only observed among prairie voles; males exhibited higher proliferative responses to LPS than females. Male meadow voles had higher circulating testosterone concentrations than male prairie voles and female prairie voles had higher estradiol concentrations than female meadow voles. Males of both Microtus species weighed more than conspecific females. The immunological differences were not related to differences in either body mass or hormone concentrations. Overall, these data do not support the hypothesis that higher androgen concentrations in polygynous males influence sex or species differences in immune function.


2021 ◽  
Vol 15 ◽  
Author(s):  
Peter J. Attilio ◽  
Dustin M. Snapper ◽  
Milan Rusnak ◽  
Akira Isaac ◽  
Anthony R. Soltis ◽  
...  

Traumatic brain injury (TBI) results in complex pathological reactions, where the initial lesion is followed by secondary inflammation and edema. Our laboratory and others have reported that angiotensin receptor blockers (ARBs) have efficacy in improving recovery from traumatic brain injury in mice. Treatment of mice with a subhypotensive dose of the ARB candesartan results in improved functional recovery, and reduced pathology (lesion volume, inflammation and gliosis). In order to gain a better understanding of the molecular mechanisms through which candesartan improves recovery after controlled cortical impact injury (CCI), we performed transcriptomic profiling on brain regions after injury and drug treatment. We examined RNA expression in the ipsilateral hippocampus, thalamus and hypothalamus at 3 or 29 days post injury (dpi) treated with either candesartan (0.1 mg/kg) or vehicle. RNA was isolated and analyzed by bulk mRNA-seq. Gene expression in injured and/or candesartan treated brain region was compared to that in sham vehicle treated mice in the same brain region to identify genes that were differentially expressed (DEGs) between groups. The most DEGs were expressed in the hippocampus at 3 dpi, and the number of DEGs reduced with distance and time from the lesion. Among pathways that were differentially expressed at 3 dpi after CCI, candesartan treatment altered genes involved in angiogenesis, interferon signaling, extracellular matrix regulation including integrins and chromosome maintenance and DNA replication. At 29 dpi, candesartan treatment reduced the expression of genes involved in the inflammatory response. Some changes in gene expression were confirmed in a separate cohort of animals by qPCR. Fewer DEGs were found in the thalamus, and only one in the hypothalamus at 3 dpi. Additionally, in the hippocampi of sham injured mice, 3 days of candesartan treatment led to the differential expression of 384 genes showing that candesartan in the absence of injury had a powerful impact on gene expression specifically in the hippocampus. Our results suggest that candesartan has broad actions in the brain after injury and affects different processes at acute and chronic times after injury. These data should assist in elucidating the beneficial effect of candesartan on recovery from TBI.


2021 ◽  
Author(s):  
Lea Zillich ◽  
Eric Poisel ◽  
Josef Frank ◽  
Jerome C. Foo ◽  
Marion M. Friske ◽  
...  

Alcohol Use Disorder (AUD) is a major contributor to global mortality and morbidity. Postmortem human brain tissue enables the investigation of molecular mechanisms of AUD in the neurocircuitry of addiction. We aimed to identify differentially expressed (DE) genes in the ventral and dorsal striatum between individuals with AUD and controls, and to integrate the results with findings from genome- and epigenome-wide association studies (GWAS/EWAS) to identify functionally relevant molecular mechanisms of AUD. DNA-methylation and gene expression (RNA-seq) data was generated from postmortem brain samples of 48 individuals with AUD and 51 controls from the ventral striatum (VS) and the dorsal striatal regions caudate nucleus (CN) and putamen (PUT). We identified DE genes using DESeq2, performed gene-set enrichment analysis (GSEA), and tested enrichment of DE genes in results of GWASs using MAGMA. Weighted correlation network analysis (WGCNA) was performed for DNA-methylation and gene expression data and gene overlap was tested. In the dorsal striatum, we discovered differential expression (FDR<0.05) for a total of 50 genes. In the VS, DE genes at FDR<0.25 were overrepresented in a recent GWAS of problematic alcohol use. The ARHGEF15 gene was upregulated in all three brain regions. GSEA in CN and VS pointed towards cell-structure associated GO-terms and in PUT towards immune pathways. The WGCNA modules most strongly associated with AUD showed strong enrichment for immune response and inflammation pathways. Our integrated analysis of multi-omics data sets provides further evidence for the importance of immune-and inflammation-related processes in AUD.


2006 ◽  
Vol 361 (1476) ◽  
pp. 2187-2198 ◽  
Author(s):  
Elizabeth A.D Hammock ◽  
Larry J Young

Understanding the neurobiological substrates regulating normal social behaviours may provide valuable insights in human behaviour, including developmental disorders such as autism that are characterized by pervasive deficits in social behaviour. Here, we review the literature which suggests that the neuropeptides oxytocin and vasopressin play critical roles in modulating social behaviours, with a focus on their role in the regulation of social bonding in monogamous rodents. Oxytocin and vasopressin contribute to a wide variety of social behaviours, including social recognition, communication, parental care, territorial aggression and social bonding. The effects of these two neuropeptides are species-specific and depend on species-specific receptor distributions in the brain. Comparative studies in voles with divergent social structures have revealed some of the neural and genetic mechanisms of social-bonding behaviour. Prairie voles are socially monogamous; males and females form long-term pair bonds, establish a nest site and rear their offspring together. In contrast, montane and meadow voles do not form a bond with a mate and only the females take part in rearing the young. Species differences in the density of receptors for oxytocin and vasopressin in ventral forebrain reward circuitry differentially reinforce social-bonding behaviour in the two species. High levels of oxytocin receptor (OTR) in the nucleus accumbens and high levels of vasopressin 1a receptor (V1aR) in the ventral pallidum contribute to monogamous social structure in the prairie vole. While little is known about the genetic factors contributing to species-differences in OTR distribution, the species-specific distribution pattern of the V1aR is determined in part by a species-specific repetitive element, or ‘microsatellite’, in the 5′ regulatory region of the gene encoding V1aR ( avpr1a ). This microsatellite is highly expanded in the prairie vole (as well as the monogamous pine vole) compared to a very short version in the promiscuous montane and meadow voles. These species differences in microsatellite sequence are sufficient to change gene expression in cell culture. Within the prairie vole species, intraspecific variation in the microsatellite also modulates gene expression in vitro as well as receptor distribution patterns in vivo and influences the probability of social approach and bonding behaviour. Similar genetic variation in the human AVPR1A may contribute to variations in human social behaviour, including extremes outside the normal range of behaviour and those found in autism spectrum disorders. In sum, comparative studies in pair-bonding rodents have revealed neural and genetic mechanisms contributing to social-bonding behaviour. These studies have generated testable hypotheses regarding the motivational systems and underlying molecular neurobiology involved in social engagement and social bond formation that may have important implications for the core social deficits characterizing autism spectrum disorders.


Sign in / Sign up

Export Citation Format

Share Document