Adaptation and other Phenomena in the Optokinetic Response of the Crab, Carcinus

1966 ◽  
Vol 44 (2) ◽  
pp. 285-295
Author(s):  
G. A. HORRIDGE

1. Adaptation to oscillatory stimuli is significant in the range 1-10/sec., for angular amplitudes of about 1°. The mechanism for perception of slow components remains unchanged when that to fast components is eliminated by adaptation. 2. Spontaneous leg movements are accompanied by a temporary increase in gain, showing a central control of the gain. 3. All eye movements are in two dimensions and components in the vertical plane appear similar to those in the horizontal plane, except that in the vertical plane the maximum range is over about 5° and there is no fast return phase. 4. The eye position is less stable in the dark. A single small light giving 0.0003 lux is sufficient to remove low-frequency components from the spontaneous eye movements 5. An imposed tremor of amplitude 0.2-2.0° and period 1-10 sec. is sufficient to make stationary stripes, which would otherwise be ineffective, have an inhibitory effect on movements of the other eye. 6. A new form of arthropod eye movement, saccadic flicks, can be a sign of arousal and attention. 7. Optokinetic responses are a consequence of the visual stabilization of the eye.

1983 ◽  
Vol 107 (1) ◽  
pp. 349-366 ◽  
Author(s):  
D.M. NEIL ◽  
H. SCHÖNE ◽  
F. SCAPINI ◽  
J.A. MIYAN

1. The optokinetic responses of the spiny lobster, Palinurus vulgaris, were measured in the vertical roll plane. The eyes followed the stripes without nystagmus, and demonstrated incomplete bilateral coupling. Closed-loop responses to oscillating stripes (20° peak-to-peak) showed marked habituation at frequencies above 0.1 Hz, but at lower frequencies continued undiminished, with amplitude-gain values approaching 1.0. 2. Changes in illuminance level demonstrated that the optokinetic response exhibited a threshold below which the eye initially failed to detect and follow the stripes. However, over a period of several minutes, the previous response level could be restored or even exceeded. 3. The optokinetic response could be antagonized by a response to the irradiance gradient, which also had a threshold and showed adaptation. Migration of visual screening pigments may underlie these adaptation processes. 4. Optokinetic stimuli could interact with proprioceptive inputs arising from displacements of the legs on a moving platform. When the proprioceptive inputs were of equal frequency and in antiphase, the optokinetic response was reduced in amplitude; it was in phase with the visual stimulus at low frequencies, and in phase with the platform in the high-frequency range. When the inputs had unequal frequencies, the eyes followed the drum if its frequency was low, but failed to follow either drum or platform if drum frequency was high. We conclude that multisensory control extends the frequency range of operation of compensatory eye movements, and is dominated by the low-frequency optokinetic response.


2005 ◽  
Vol 9 (3) ◽  
pp. 127-137 ◽  
Author(s):  
S. Sinclair ◽  
G. G. S. Pegram

Abstract. A data-driven method for extracting temporally persistent information, at different spatial scales, from rainfall data (as measured by radar/satellite) is described, which extends the Empirical Mode Decomposition (EMD) algorithm into two dimensions. The EMD technique is used here to decompose spatial rainfall data into a sequence of high through to low frequency components. This process is equivalent to the application of successive low-pass spatial filters, but based on the observed properties of the data rather than the predetermined basis functions used in traditional Fourier or Wavelet decompositions. It has been suggested in the literature that the lower frequency components (those with large spatial extent) of spatial rainfall data exhibit greater temporal persistence than the higher frequency ones. This idea is explored here in the context of Empirical Mode Decomposition. The paper focuses on the implementation and development of the two-dimensional extension to the EMD algorithm and it's application to radar rainfall data, as well as examining temporal persistence in the data at different spatial scales.


2017 ◽  
Vol 118 (1) ◽  
pp. 300-316 ◽  
Author(s):  
Friedrich Kretschmer ◽  
Momina Tariq ◽  
Walid Chatila ◽  
Beverly Wu ◽  
Tudor Constantin Badea

During animal locomotion or position adjustments, the visual system uses image stabilization reflexes to compensate for global shifts in the visual scene. These reflexes elicit compensatory head movements (optomotor response, OMR) in unrestrained animals or compensatory eye movements (optokinetic response, OKR) in head-fixed or unrestrained animals exposed to globally rotating striped patterns. In mice, OMR are relatively easy to observe and find broad use in the rapid evaluation of visual function. OKR determinations are more involved experimentally but yield more stereotypical, easily quantifiable results. The relative contributions of head and eye movements to image stabilization in mice have not been investigated. We are using newly developed software and apparatus to accurately quantitate mouse head movements during OMR, quantitate eye movements during OKR, and determine eye movements in freely behaving mice. We provide the first direct comparison of OMR and OKR gains (head or eye velocity/stimulus velocity) and find that the two reflexes have comparable dependencies on stimulus luminance, contrast, spatial frequency, and velocity. OMR and OKR are similarly affected in genetically modified mice with defects in retinal ganglion cells (RGC) compared with wild-type, suggesting they are driven by the same sensory input (RGC type). OKR eye movements have much higher gains than the OMR head movements, but neither can fully compensate global visual shifts. However, combined eye and head movements can be detected in unrestrained mice performing OMR, suggesting they can cooperate to achieve image stabilization, as previously described for other species. NEW & NOTEWORTHY We provide the first quantitation of head gain during optomotor response in mice and show that optomotor and optokinetic responses have similar psychometric curves. Head gains are far smaller than eye gains. Unrestrained mice combine head and eye movements to respond to visual stimuli, and both monocular and binocular fields are used during optokinetic responses. Mouse OMR and OKR movements are heterogeneous under optimal and suboptimal stimulation and are affected in mice lacking ON direction-selective retinal ganglion cells.


The eyes of the crab Carcinus follow the movement of a horizontally rotating striped drum with a constantly increasing lag. The relative movement or slip speed is the stimulus for the eye, which with increasing stimulus increases its speed of response over a range of slip speeds from 0.001°/s to 10.0°/s. The gain in the forward control system, i. e. the ratio of eye speed to slip speed, can be as great as 15. The slowest effective slip speed is very low, about a sixth of the speed of the sun across the sky. Whether a seeing eye is allowed to move or not, it will drive the other eye if the latter sees no contrasting objects. An eye can also be driven in this way after section of its optic tract or after painting the cornea. When an eye which is free to move is exposed to a stationary striped field it suppresses the optokinetic response of the other eye, but if the eye exposed to the stationary contrasting field is clamped to the carapace, it no longer suppresses the optokinetic response of the contralateral eye; i. e. clamping the eye has here the same effect as blinding it. The control of the eye movement appears to be unaffected statically or dynamically by proprioceptors of the eye region. The initiation of the rapid flick back in the optokinetic response also takes no account of proprioceptors, but seems to occur when the efferent impulses to eye muscles reach a threshold frequency, which is only slightly modified by blinding one eye. The flick back is synchronized on the two sides. A different reflex, protective retraction, is a fast movement of the eye back into its socket, for which the minimum stimulus can be a touch to one sensory hair alone. During the rapid return phase of the optokinetic response, and during the retraction reflex, the efferent optokinetic impulses are suppressed, and, in addition, peripheral neuromuscular inhibition of tonic motor activity occurs when protective retraction over-rides the optokinetic response. On extending again after retraction, the blinded eye of a unilaterally blinded crab returns to the point in the optokinetic response where it left off. There are spontaneous eye movements which, although of less than one degree, are adequate to excite visual receptors in a stationary visual field. This is demonstrated by the decrease of the tremor when the visual field is changed from a blank one to a contrasting one. In addition, a small scanning movement of a few degrees is initiated when a contrasting object is introduced into the visual field. Therefore there is every reason to suppose that stationary contrasting objects can be perceived by spontaneous and by scanning movements. Similarities of the control system with that in mammals are the lack of a positional proprioceptive effect, coupled with the importance of the motor outflow as a controlling factor. Although there is eye tremor, as in mammals, the main control of eye movements in the crab is by the movement and not by position of a striped field relative to the eye.


2005 ◽  
Vol 2 (1) ◽  
pp. 289-318 ◽  
Author(s):  
S. Sinclair ◽  
G. G. S. Pegram

Abstract. A data-driven method for extracting information, at temporally predictable scales, from spatial rainfall data (as measured by radar/satellite) is described, which extends the Empirical Mode Decomposition (EMD) algorithm into two dimensions. The EMD technique is used here to separate spatial rainfall data into a sequence of high through to low frequency components. This process is equivalent to a low-pass spatial filter, but based on the observed properties of the data rather than the predefined basis functions used in traditional Fourier or Wavelet decompositions. It has been suggested in the literature that the lower frequency components of spatial rainfall data exhibit greater temporal persistence than the higher frequency ones. This idea is explored here in the context of Empirical Mode Decomposition, to prepare rainfall data for nowcasts based on the temporal evolution of the lower frequency components. The paper focuses on the implementation and development of the two-dimensional extension to the EMD algorithm and it's application to radar rainfall data, as well as examining temporal persistence in the data at different spatial scales.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Author(s):  
В. М. Мойсишин ◽  
M. V. Lyskanych ◽  
R. A. Zhovniruk ◽  
Ye. P. Majkovych

The purpose of the proposed article is to establish the causes of oscillations of drilling tool and the basic laws of the distribution of the total energy of the process of changing the axial dynamic force over frequencies of spectrum. Variable factors during experiments on the classical plan were the rigidity of drilling tool and the hardness of the rock. According to the results of research, the main power of the process of change of axial dynamic force during drilling of three roller cone bits is in the frequency range 0-32 Hz in which three harmonic frequency components are allocated which correspond to the theoretical values of low-frequency and gear oscillations of the chisel and proper oscillations of the bit. The experimental values of frequencies of harmonic components of energy and normalized spectrum as well as the magnitude of the dispersion of the axial dynamic force and its normalized values at these frequencies are presented. It has been found that with decreasing rigidity of the drilling tool maximum energy of axial dynamic force moves from the low-frequency oscillation region to the tooth oscillation area, intensifying the process of rock destruction and, at the same time, protecting the tool from the harmful effects of the vibrations of the bit. Reducing the rigidity of the drilling tool protects the bit from the harmful effects of the vibrations generated by the stand. The energy reductions in these fluctuations range from 47 to 77%.


2019 ◽  
Vol 14 (7) ◽  
pp. 658-666
Author(s):  
Kai-jian Xia ◽  
Jian-qiang Wang ◽  
Jian Cai

Background: Lung cancer is one of the common malignant tumors. The successful diagnosis of lung cancer depends on the accuracy of the image obtained from medical imaging modalities. Objective: The fusion of CT and PET is combining the complimentary and redundant information both images and can increase the ease of perception. Since the existing fusion method sare not perfect enough, and the fusion effect remains to be improved, the paper proposes a novel method called adaptive PET/CT fusion for lung cancer in Piella framework. Methods: This algorithm firstly adopted the DTCWT to decompose the PET and CT images into different components, respectively. In accordance with the characteristics of low-frequency and high-frequency components and the features of PET and CT image, 5 membership functions are used as a combination method so as to determine the fusion weight for low-frequency components. In order to fuse different high-frequency components, we select the energy difference of decomposition coefficients as the match measure, and the local energy as the activity measure; in addition, the decision factor is also determined for the high-frequency components. Results: The proposed method is compared with some of the pixel-level spatial domain image fusion algorithms. The experimental results show that our proposed algorithm is feasible and effective. Conclusion: Our proposed algorithm can better retain and protrude the lesions edge information and the texture information of lesions in the image fusion.


Author(s):  
ZHAO Baiting ◽  
WANG Feng ◽  
JIA Xiaofen ◽  
GUO Yongcun ◽  
WANG Chengjun

Background:: Aiming at the problems of color distortion, low clarity and poor visibility of underwater image caused by complex underwater environment, a wavelet fusion method UIPWF for underwater image enhancement is proposed. Methods:: First of all, an improved NCB color balance method is designed to identify and cut the abnormal pixels, and balance the color of R, G and B channels by affine transformation. Then, the color correction map is converted to CIELab color space, and the L component is equalized with contrast limited adaptive histogram to obtain the brightness enhancement map. Finally, different fusion rules are designed for low-frequency and high-frequency components, the pixel level wavelet fusion of color balance image and brightness enhancement image is realized to improve the edge detail contrast on the basis of protecting the underwater image contour. Results:: The experiments demonstrate that compared with the existing underwater image processing methods, UIPWF is highly effective in the underwater image enhancement task, improves the objective indicators greatly, and produces visually pleasing enhancement images with clear edges and reasonable color information. Conclusion:: The UIPWF method can effectively mitigate the color distortion, improve the clarity and contrast, which is applicable for underwater image enhancement in different environments.


Author(s):  
Priya R. Kamath ◽  
Kedarnath Senapati ◽  
P. Jidesh

Speckles are inherent to SAR. They hide and undermine several relevant information contained in the SAR images. In this paper, a despeckling algorithm using the shrinkage of two-dimensional discrete orthonormal S-transform (2D-DOST) coefficients in the transform domain along with shock filter is proposed. Also, an attempt has been made as a post-processing step to preserve the edges and other details while removing the speckle. The proposed strategy involves decomposing the SAR image into low and high-frequency components and processing them separately. A shock filter is used to smooth out the small variations in low-frequency components, and the high-frequency components are treated with a shrinkage of 2D-DOST coefficients. The edges, for enhancement, are detected using a ratio-based edge detection algorithm. The proposed method is tested, verified, and compared with some well-known models on C-band and X-band SAR images. A detailed experimental analysis is illustrated.


Sign in / Sign up

Export Citation Format

Share Document