scholarly journals Electromyography of the Respiratory Muscles and Gill Water Flow in the Dragonet

1968 ◽  
Vol 49 (3) ◽  
pp. 583-602
Author(s):  
G. M. HUGHES ◽  
C. M. BALLINTIJN

1. An account is given of the main skeletal elements and muscles involved in the respiratory movements of the dragonet, Callionymus lyra. 2. Using electromyographic techniques it has been shown that the muscles chiefly involved in rapid ejection of water out of the opercular slit are the adductor mandibulae, protractor hyoideus, and hyohyoideus. During the expansion phase of the cycle, which is about six times the duration of the contraction phase, the levator hyomandibulae and sternohyoideus are active, though in some cases the latter only comes in at higher levels of pumping. 3. Changes in volume flow across the gills have been produced by either (a) altering the hydrostatic pressure gradient (Δp) across the system, or (b) altering the oxygen or carbon dioxide content of the water inspired by the fish. With (a), the volume flow decreases linearly at a rate of about 30 ml./min./cm. H2O static pressure head until an inflexion is reached in the curve at which rate of flow decreases and is normally when Δp is zero. That the relative increase in flow rate with negative Δp's is due to the activity of the fish pumping against the adverse pressure gradient has been confirmed by electromyogram recordings during such experiments. With (b), it was possible to demonstrate a clear relationship between stroke volume and the level of electrical activity as measured by the height of the integrated electromyogram. The integrated EMG increases more than linearly with increasing stroke volume during PO2 changes, but this relationship seems to be more nearly linear during changes in CO2 concentration. 4. The respiratory frequency is scarcely affected by changes in flow produced by altering the hydrostatic pressure gradient, but following a decrease in PO2 or an increase in CO2 there is a significant fall in frequency which accompanies the increased electromyogram. The time course of these changes during recovery from a decrease in PO2 or an increase in PCOCO2 suggests that the gas tensions of the inspired water are detected by receptors on the gills and thus influence the electromyogram activity, but the frequency change observed is due to a change in the blood affecting receptors in the brain.

1993 ◽  
Vol 265 (3) ◽  
pp. R670-R675
Author(s):  
J. Stulc ◽  
B. Stulcova

Transfer of [14C]mannitol, 51Cr-labeled EDTA, and [14C]-inulin from mother to fetus and from fetus to mother was measured in rats under pentobarbital anesthesia. The clearance of the three substances from the mother to fetus (Kmf) was 2.69 +/- 0.38, 1.93 +/- 0.73, and 0.47 +/- 0.14 microliter/min (means +/- SE), respectively, and the clearance from fetus to mother (Kfm) was 5.97, 6.66, and 4.95 microliters/min, respectively (the SE could not be estimated). Kfm appears to be consistently higher than Kmf by an almost constant value of approximately 4 microliters/min. To explain this a hypothesis was proposed according to which volume flow circulates across the placenta. Solute-free water is driven transcellularly across the placental barrier from the maternal to the fetal side by a difference of osmotic pressure created by active transport of some solutes (mainly Na+) to the fetus. Water together with all solutes dissolved returns from fetus to mother by filtration through wide extracellular channels in the placenta down a hydrostatic pressure gradient.


1995 ◽  
Vol 268 (6) ◽  
pp. C1450-C1459 ◽  
Author(s):  
M. S. Awayda ◽  
I. I. Ismailov ◽  
B. K. Berdiev ◽  
D. J. Benos

We have previously cloned a bovine renal epithelial channel homologue (alpha-bENaC) belonging to the epithelial Na+ channel (ENaC) family. With the use of a rabbit nuclease-treated in vitro translation system, mRNA coding for alpha-bENaC was translated and the polypeptide products were reconstituted into liposomes. On incorporation into planar lipid bilayers, in vitro-translated alpha-bENaC protein 1) displayed voltage-independent Na+ channel activity with a single-channel conductance of 40 pS, 2) was mechanosensitive in that the single-channel open probability was maximally activated with a hydrostatic pressure gradient of 0.26 mmHg across the bilayer, 3) was blocked by low concentrations of amiloride [apparent inhibitory constant of amiloride (K(i)amil approximately 150 nM], and 4) was cation selective with a Li+:Na+:K+ permselectivity of 2:1:0.14 under nonstretched conditions. These pharmacological and selectivity characteristics were altered to a lower amiloride affinity (K(i)amil > 25 microM) and a lack of monovalent cation selectivity in the presence of a hydrostatic pressure gradient. This observation of stretch activation (SA) of alpha-bENaC was confirmed in dual electrode recordings of heterologously expressed alpha-bENaC whole cell currents in Xenopus oocytes swelled by the injection of 15 nl of a 100 mM KCl solution. We conclude that alpha-bENaC, and by analogy other ENaCs, represent a novel family of cloned SA channels.


1986 ◽  
Vol 6 (5) ◽  
pp. 546-552 ◽  
Author(s):  
Shizuo Hatashita ◽  
Julian T. Hoff

We studied whether a hydrostatic pressure gradient between arterial blood and brain tissue plays a role in the formation of early ischemic cerebral edema after middle cerebral artery (MCA) occlusion in cats. Tissue pressure, regional CBF, and water content were measured from the cortex in the core and the peripheral zone of brain normally perfused by the MCA. Intraluminal arterial pressure was altered at intervals by inflation of an aortic balloon to vary the blood–tissue pressure gradient in the ischemic zone. Brain water content in the ischemic core, where flow fell to 5.5 ml/100 g/min, increased within 1 h of occlusion. After occlusion tissue pressure rose from 7.95 ± 0.72 mm Hg at 1 h to 13.16 ± 1.13 mm Hg at 3 h. When intraluminal pressure was increased, water content increased further, but only at 1 h after occlusion. In the periphery where flow was 18.9 ml/100 g/min during normotension. neither water content nor tissue pressure rose within 3 h of occlusion. Increased intraluminal pressure was accompanied by increased water content only at 3 h. This study indicates that a hydrostatic pressure gradient is an important element in the development of ischemic brain edema, exerting its major effect during the initial phase of the edema process.


1987 ◽  
Vol 14 (4) ◽  
pp. 397 ◽  
Author(s):  
PEH Minchin ◽  
MR Thorpe

A pressure chamber was used to increase suddenly the hydrostatic pressure in the upper shoot of a Phaseolus vulgaris plant while observing phloem transport of 11C-labelled photoassimilate. Phloem transport in the stem towards the chamber stopped immediately when pressure was applied and then recovered within about 5 min. If the pressure was then released, flow increased again. The results support the hypothesis that flow of photoassimilate in the stem phloem was driven by a hydrostatic pressure gradient.


2021 ◽  
Vol 91 (5) ◽  
pp. 451-463
Author(s):  
R.W.C. (Bill) Arnott ◽  
Mike Tilston ◽  
Patricia Fraino ◽  
Lillian Navarro ◽  
Gerry Dumouchel ◽  
...  

ABSTRACT Channels with a sinuous planform are common in both continental and deep-marine environments on Earth, and similarly in high-resolution images of the surface of Mars. Whereas common in rivers, continuous lateral channel migration and point-bar deposition appear to be much less common in the deep sea. In the bends of rivers, near-bed flow driving point bar growth results from a cross-flow superelevation of the water surface that sets up a lateral hydrostatic pressure gradient driving an inward-directed flow near the bed. However, in deep-marine systems the surface between the turbidity current and overlying ambient fluid sits well above the channel margins, and therefore precludes a similar lateral superelevation of the current top. Here it is argued that the cross-flow component is related to a density gradient that mimics the effect of the hydrostatic pressure gradient in rivers, and develops as coarse suspended particles that experience little uplift, and therefore negligible overspill, become concentrated along the outer bank. This condition develops best in a two-part suspension made up of a highly concentrated, unstratified basal plug of coarse sediment overlain sharply by a dilute cloud of much finer sediment—a density structure that differs from the more typical upward exponential decrease in density. The abundance of coarse and fine sand, but depletion in the intermediate grain size fraction, is related to transgressive shelf processes and its influence on sediment supplied to the system, and in turn, the flow structure of the current. It is under these seemingly uncommon granulometric conditions that continuous laterally migrating channels, and accordingly, riverine-like point-bar deposition, is most common in the deep sea.


1997 ◽  
Vol 119 (3) ◽  
pp. 700-706 ◽  
Author(s):  
J. L. Lage ◽  
B. V. Antohe ◽  
D. A. Nield

Previous reports of experiments performed with water (Fund et at., 1987 and Kececioglu and Jiang, 1994) indicated that beyond the Forchheimer regime the rate of change of the hydrostatic pressure gradient along a porous medium suddenly decreases. This abnormal behavior has been termed “transition to turbulence in a porous medium.” We investigate the relationship between the hydrostatic pressure gradient of a fluid (air) through a porous medium and the average seepage fluid velocity. Our experimental results, reported here, indicate an increase in the hydrostatic pressure rate beyond a certain transition speed, not a decrease. Physical arguments based on a consideration of internal versus external incompressible viscous flow are used to justify this distinct behavior, a consequence of the competition between a form dominated transition and a viscous dominated transition. We establish a criterion for the viscous dominated transition from consideration of the results of three porous media with distinct hydraulic characteristics. A theoretical analysis based on the semivariance model validation principle indicates that the pressure gradient versus fluid speed relation indeed departs from the quadratic Forchheimer-extended Darcy flow model, and can be correlated by a cubic function of fluid speed for the velocity range of our experiments.


Sign in / Sign up

Export Citation Format

Share Document