Aerodynamics, kinematics, and energetics of horizontal flapping flight in the long-eared bat Plecotus auritus

1976 ◽  
Vol 65 (1) ◽  
pp. 179-212 ◽  
Author(s):  
U. M. Norberg

The kinematics, aerodynamics, and energetics of Plecotus auritus in slow horizontal flight, 2–35 m s-1, are analysed. At this speed the inclination of the stroke path is ca. 58 degrees to the horizontal, the stroke angle ca. 91 degrees, and the stroke frequency ca. 11-9 Hz. A method, based on steady-state aerodynamic and momenthum theories, is derived to calculate the lift and drag coefficients as averaged over the whole wing the whole wing-stroke for horizontal flapping flight. This is a further development of Pennycuick's (1968) and Weis-Fogh's (1972) expressions for calculating the lift coefficient. The lift coefficient obtained varies between 1-4 and 1-6, the drag coefficient between 0-4 and 1-2, and the lift:drag ratio between 1-2 and 4-0. The corresponding, calculated, total specific mechanical power output of the wing muscles varies between 27-0 and 40-4 W kg-1 body mass. A maximum estimate of mechanical efficiency is 0–26. The aerodynamic efficiency varies between 0–07 and 0–10. The force coefficient, total mechanical power output, and mechanical and aerodynamic efficiencies are all plausible, demonstrating that the slow flapping flight of Plecotus is thus explicable by steady-state aerodynamics. The downstroke is the power stroke for the vertical upward forces and the upstroke for the horizontal forward forces.

1972 ◽  
Vol 56 (1) ◽  
pp. 79-104 ◽  
Author(s):  
TORKEL WEIS-FOGH

1. Expressions have been derived for an estimate of the average coefficient of lift, for the variation in bending moment or torque caused by wind forces and by inertia forces, and for the power output during hovering flight on one spot when the wings move according to a horizontal figure-of-eight. 2. In both hummingbirds and Drosophila the flight is consistent with steady-state aerodynamics, the average lift coefficient being 1.8 in the hummingbird and 0.8 in Drosophila. 3. The aerodynamic or hydraulic efficiency is 0.5 in the hummingbird and 0.3 in Drosophila, and in both types the aerodynamic power output is 22-24 cal/g body weight/h. 4. The total mechanical power output is 39 cal g-1 h-1 in the hummingbird because of the extra energy needed to accelerate the wing-mass. It is 24 cal g-1 h-1 in Drosophila in which the inertia term is negligible because the wing-stroke frequency is reduced to the lowest possible value for sustained flight. 5. In both animals the mechanical efficiency of the flight muscles is 0.2. 6. It is argued that the tilt of the stroke plane relative to the horizontal is an adaptation to the geometrically unfavourable induced wind and to the relatively large lift/drag ratio seen in many insects. The vertical movements at the extreme ends may serve to reduce the interaction between the shed ‘stopping’ vortex and the new bound vortex of opposite sense which has to be built up during the early part of the return stroke. 7. Two additional non-steady flow situations may exist at either end of the stroke, delayed stall and delayed build-up of circulation (Wagner effect), but since they have opposite effects it is probable that the resultant force is of about the same magnitude as that estimated for a steady-state situation. 8. Most insects have an effective elastic system to counteract the adverse effect of wing-inertia, but small fast-moving vertebrates have not. It is argued that the only material available for this purpose in this group is elastin and that it is unsuited at the rates of deformation required because recent measurements have shown that the damping is relatively high, probably due to molecular factors.


1997 ◽  
Vol 200 (3) ◽  
pp. 583-600 ◽  
Author(s):  
JM Wakeling ◽  
CP Ellington

A mean lift coefficient quasi-steady analysis has been applied to the free flight of the dragonfly Sympetrum sanguineum and the damselfly Calopteryx splendens. The analysis accommodated the yaw and accelerations involved in free flight. For any given velocity or resultant aerodynamic force (thrust), the damselfly mean lift coefficient was higher than that for the dragonfly because of its clap and fling. For both species, the maximum mean lift coefficient L was higher than the steady CL,max. Both species aligned their strokes planes to be nearly normal to the thrust, a strategy that reduces the L required for flight and which is different from the previously published hovering and slow dragonfly flights with stroke planes steeply inclined to the horizontal. Owing to the relatively low costs of accelerating the wing, the aerodynamic power required for flight represents the mechanical power output from the muscles. The maximum muscle mass-specific power was estimated at 156 and 166 W kg-1 for S. sanguineum and C. splendens, respectively. Measurements of heat production immediately after flight resulted in mechanical efficiency estimates of 13 % and 9 % for S. sanguineum and C. splendens muscles, respectively.


Sports ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 151 ◽  
Author(s):  
Takafumi Kubo ◽  
Kuniaki Hirayama ◽  
Nobuhiro Nakamura ◽  
Mitsuru Higuchi

The aim of this study was to investigate whether accommodating elastic bands with barbell back squats (BSQ) increase muscular force during the deceleration subphase. Ten healthy men (mean ± standard deviation: Age: 23 ± 2 years; height: 170.5 ± 3.7 cm; mass: 66.7 ± 5.4 kg; and BSQ one repetition maximum (RM): 105 ± 23.1 kg; BSQ 1RM/body mass: 1.6 ± 0.3) were recruited for this study. The subjects performed band-resisted parallel BSQ (accommodating elastic bands each sides of barbell) with five band conditions in random order. The duration of the deceleration subphase, mean mechanical power, and the force and velocity during the acceleration and deceleration subphases were calculated. BSQ with elastic bands elicited greater mechanical power output, velocity, and force during the deceleration subphase, in contrast to that elicited with traditional free weight (p < 0.05). BSQ with elastic bands also elicited greater mechanical power output and velocity during the acceleration subphase. However, the force output during the acceleration subphase using an elastic band was lesser than that using a traditional free weight (p < 0.05). This study suggests that BSQ with elastic band elicit greater power output during the acceleration and deceleration subphases.


2010 ◽  
Vol 628 (1-3) ◽  
pp. 116-127 ◽  
Author(s):  
Diethart Schmid ◽  
Dawid L. Staudacher ◽  
Christian A. Plass ◽  
Hans G. Loew ◽  
Eva Fritz ◽  
...  

2000 ◽  
Vol 203 (17) ◽  
pp. 2667-2689 ◽  
Author(s):  
R.K. Josephson ◽  
J.G. Malamud ◽  
D.R. Stokes

The basalar muscle of the beetle Cotinus mutabilis is a large, fibrillar flight muscle composed of approximately 90 fibers. The paired basalars together make up approximately one-third of the mass of the power muscles of flight. Changes in twitch force with changing stimulus intensity indicated that a basalar muscle is innervated by at least five excitatory axons and at least one inhibitory axon. The muscle is an asynchronous muscle; during normal oscillatory operation there is not a 1:1 relationship between muscle action potentials and contractions. During tethered flight, the wing-stroke frequency was approximately 80 Hz, and the action potential frequency in individual motor units was approximately 20 Hz. As in other asynchronous muscles that have been examined, the basalar is characterized by high passive tension, low tetanic force and long twitch duration. Mechanical power output from the basalar muscle during imposed, sinusoidal strain was measured by the work-loop technique. Work output varied with strain amplitude, strain frequency, the muscle length upon which the strain was superimposed, muscle temperature and stimulation frequency. When other variables were at optimal values, the optimal strain for work per cycle was approximately 5%, the optimal frequency for work per cycle approximately 50 Hz and the optimal frequency for mechanical power output 60–80 Hz. Optimal strain decreased with increasing cycle frequency and increased with muscle temperature. The curve relating work output and strain was narrow. At frequencies approximating those of flight, the width of the work versus strain curve, measured at half-maximal work, was 5% of the resting muscle length. The optimal muscle length for work output was shorter than that at which twitch and tetanic tension were maximal. Optimal muscle length decreased with increasing strain. The curve relating work output and muscle length, like that for work versus strain, was narrow, with a half-width of approximately 3 % at the normal flight frequency. Increasing the frequency with which the muscle was stimulated increased power output up to a plateau, reached at approximately 100 Hz stimulation frequency (at 35 degrees C). The low lift generated by animals during tethered flight is consistent with the low frequency of muscle action potentials in motor units of the wing muscles. The optimal oscillatory frequency for work per cycle increased with muscle temperature over the temperature range tested (25–40 degrees C). When cycle frequency was held constant, the work per cycle rose to an optimum with increasing temperature and then declined. We propose that there is a temperature optimum for work output because increasing temperature increases the shortening velocity of the muscle, which increases the rate of positive work output during shortening, but also decreases the durations of the stretch activation and shortening deactivation that underlie positive work output, the effect of temperature on shortening velocity being dominant at lower temperatures and the effect of temperature on the time course of activation and deactivation being dominant at higher temperatures. The average wing-stroke frequency during free flight was 94 Hz, and the thoracic temperature was 35 degrees C. The mechanical power output at the measured values of wing-stroke frequency and thoracic temperature during flight, and at optimal muscle length and strain, averaged 127 W kg(−1)muscle, with a maximum value of 200 W kg(−1). The power output from this asynchronous flight muscle was approximately twice that measured with similar techniques from synchronous flight muscle of insects, supporting the hypothesis that asynchronous operation has been favored by evolution in flight systems of different insect groups because it allows greater power output at the high contraction frequencies of flight.


2000 ◽  
Vol 89 (5) ◽  
pp. 1912-1918 ◽  
Author(s):  
Richard A. Ferguson ◽  
Per Aagaard ◽  
Derek Ball ◽  
Anthony J. Sargeant ◽  
Jens Bangsbo

A novel approach has been developed for the quantification of total mechanical power output produced by an isolated, well-defined muscle group during dynamic exercise in humans at different contraction frequencies. The calculation of total power output comprises the external power delivered to the ergometer (i.e., the external power output setting of the ergometer) and the “internal” power generated to overcome inertial and gravitational forces related to movement of the lower limb. Total power output was determined at contraction frequencies of 60 and 100 rpm. At 60 rpm, the internal power was 18 ± 1 W (range: 16–19 W) at external power outputs that ranged between 0 and 50 W. This was less ( P < 0.05) than the internal power of 33 ± 2 W (27–38 W) at 100 rpm at 0–50 W. Moreover, at 100 rpm, internal power was lower ( P < 0.05) at the higher external power outputs. Pulmonary oxygen uptake was observed to be greater ( P< 0.05) at 100 than at 60 rpm at comparable total power outputs, suggesting that mechanical efficiency is lower at 100 rpm. Thus a method was developed that allowed accurate determination of the total power output during exercise generated by an isolated muscle group at different contraction frequencies.


Sign in / Sign up

Export Citation Format

Share Document