Dragonfly flight. III. Lift and power requirements.

1997 ◽  
Vol 200 (3) ◽  
pp. 583-600 ◽  
Author(s):  
JM Wakeling ◽  
CP Ellington

A mean lift coefficient quasi-steady analysis has been applied to the free flight of the dragonfly Sympetrum sanguineum and the damselfly Calopteryx splendens. The analysis accommodated the yaw and accelerations involved in free flight. For any given velocity or resultant aerodynamic force (thrust), the damselfly mean lift coefficient was higher than that for the dragonfly because of its clap and fling. For both species, the maximum mean lift coefficient L was higher than the steady CL,max. Both species aligned their strokes planes to be nearly normal to the thrust, a strategy that reduces the L required for flight and which is different from the previously published hovering and slow dragonfly flights with stroke planes steeply inclined to the horizontal. Owing to the relatively low costs of accelerating the wing, the aerodynamic power required for flight represents the mechanical power output from the muscles. The maximum muscle mass-specific power was estimated at 156 and 166 W kg-1 for S. sanguineum and C. splendens, respectively. Measurements of heat production immediately after flight resulted in mechanical efficiency estimates of 13 % and 9 % for S. sanguineum and C. splendens muscles, respectively.

1972 ◽  
Vol 56 (1) ◽  
pp. 79-104 ◽  
Author(s):  
TORKEL WEIS-FOGH

1. Expressions have been derived for an estimate of the average coefficient of lift, for the variation in bending moment or torque caused by wind forces and by inertia forces, and for the power output during hovering flight on one spot when the wings move according to a horizontal figure-of-eight. 2. In both hummingbirds and Drosophila the flight is consistent with steady-state aerodynamics, the average lift coefficient being 1.8 in the hummingbird and 0.8 in Drosophila. 3. The aerodynamic or hydraulic efficiency is 0.5 in the hummingbird and 0.3 in Drosophila, and in both types the aerodynamic power output is 22-24 cal/g body weight/h. 4. The total mechanical power output is 39 cal g-1 h-1 in the hummingbird because of the extra energy needed to accelerate the wing-mass. It is 24 cal g-1 h-1 in Drosophila in which the inertia term is negligible because the wing-stroke frequency is reduced to the lowest possible value for sustained flight. 5. In both animals the mechanical efficiency of the flight muscles is 0.2. 6. It is argued that the tilt of the stroke plane relative to the horizontal is an adaptation to the geometrically unfavourable induced wind and to the relatively large lift/drag ratio seen in many insects. The vertical movements at the extreme ends may serve to reduce the interaction between the shed ‘stopping’ vortex and the new bound vortex of opposite sense which has to be built up during the early part of the return stroke. 7. Two additional non-steady flow situations may exist at either end of the stroke, delayed stall and delayed build-up of circulation (Wagner effect), but since they have opposite effects it is probable that the resultant force is of about the same magnitude as that estimated for a steady-state situation. 8. Most insects have an effective elastic system to counteract the adverse effect of wing-inertia, but small fast-moving vertebrates have not. It is argued that the only material available for this purpose in this group is elastin and that it is unsuited at the rates of deformation required because recent measurements have shown that the damping is relatively high, probably due to molecular factors.


1976 ◽  
Vol 65 (1) ◽  
pp. 179-212 ◽  
Author(s):  
U. M. Norberg

The kinematics, aerodynamics, and energetics of Plecotus auritus in slow horizontal flight, 2–35 m s-1, are analysed. At this speed the inclination of the stroke path is ca. 58 degrees to the horizontal, the stroke angle ca. 91 degrees, and the stroke frequency ca. 11-9 Hz. A method, based on steady-state aerodynamic and momenthum theories, is derived to calculate the lift and drag coefficients as averaged over the whole wing the whole wing-stroke for horizontal flapping flight. This is a further development of Pennycuick's (1968) and Weis-Fogh's (1972) expressions for calculating the lift coefficient. The lift coefficient obtained varies between 1-4 and 1-6, the drag coefficient between 0-4 and 1-2, and the lift:drag ratio between 1-2 and 4-0. The corresponding, calculated, total specific mechanical power output of the wing muscles varies between 27-0 and 40-4 W kg-1 body mass. A maximum estimate of mechanical efficiency is 0–26. The aerodynamic efficiency varies between 0–07 and 0–10. The force coefficient, total mechanical power output, and mechanical and aerodynamic efficiencies are all plausible, demonstrating that the slow flapping flight of Plecotus is thus explicable by steady-state aerodynamics. The downstroke is the power stroke for the vertical upward forces and the upstroke for the horizontal forward forces.


2000 ◽  
Vol 89 (5) ◽  
pp. 1912-1918 ◽  
Author(s):  
Richard A. Ferguson ◽  
Per Aagaard ◽  
Derek Ball ◽  
Anthony J. Sargeant ◽  
Jens Bangsbo

A novel approach has been developed for the quantification of total mechanical power output produced by an isolated, well-defined muscle group during dynamic exercise in humans at different contraction frequencies. The calculation of total power output comprises the external power delivered to the ergometer (i.e., the external power output setting of the ergometer) and the “internal” power generated to overcome inertial and gravitational forces related to movement of the lower limb. Total power output was determined at contraction frequencies of 60 and 100 rpm. At 60 rpm, the internal power was 18 ± 1 W (range: 16–19 W) at external power outputs that ranged between 0 and 50 W. This was less ( P < 0.05) than the internal power of 33 ± 2 W (27–38 W) at 100 rpm at 0–50 W. Moreover, at 100 rpm, internal power was lower ( P < 0.05) at the higher external power outputs. Pulmonary oxygen uptake was observed to be greater ( P< 0.05) at 100 than at 60 rpm at comparable total power outputs, suggesting that mechanical efficiency is lower at 100 rpm. Thus a method was developed that allowed accurate determination of the total power output during exercise generated by an isolated muscle group at different contraction frequencies.


1984 ◽  
Vol 108 (1) ◽  
pp. 377-392 ◽  
Author(s):  
C. J. PENNYCUICK ◽  
MARCIO A. REZENDE

A simple theory is proposed to account for the quantity of mitochondria present in aerobic muscles. Attention is restricted to muscles adapted to operate aerobically at a well-defined ‘operating frequency’. For this special case, it is shown that the volume ratio of mitochondria to myofibrils should depend on the power density of mitochondria, and the operating frequency, but not on the mechanical properties of the myofibrils. If the underlying assumptions are valid, this would mean that the specific power output of such muscles could be determined by examination of electron micrographs. We provisionally estimate that the inverse power density of mitochondria, in flight muscles running at a high temperature, is in the range 1.010−6 to 1.310−6m3W−1, that is, that a little over 1 ml of mitochondria is required to sustain 1 W of mechanical power output. On this basis, a muscle with equal volumes of mitochondria and myofibrils should be able to deliver a specific power of about 430 W kg−1, at an operating frequency around 40 Hz for nonfibrillar, or 230 Hz for fibrillar muscle. The limiting specific power should be twice this level in either case, i.e. about 860Wkg−1. It is predicted that a survey of flight muscles should yield a straight-line relationship between wing-beat frequency and the volume ratio of mitochondria to myofibrils, in a set of muscles of the same general type. It is not known whether lack of exercise, either on a long-term or short-term basis is likely to affect this. As a preliminary to such a survey, we have examined the pectoralis muscles of domesticated quail, and a wild house sparrow. Both showed a high level of variability in the mitochondria: myofibril ratio, but this may be due, at least in part, to sampling artifacts caused by the shape of mitochondrial arrays. The quail showed distinct populations of aerobic and non-aerobic fibres, apparently identical to those described in wild birds with similar flight requirements by George & Berger (1966), but the quantity of mitochondria in the aerobic fibres was less than half that expected, by comparison with other species.


1996 ◽  
Vol 199 (12) ◽  
pp. 2745-2755 ◽  
Author(s):  
P Chai ◽  
R Harrykissoon ◽  
R Dudley

Owing to their small size and hovering locomotion, hummingbirds are the most aerobically active vertebrate endotherms. Can hyperoxia enhance the flight performance of this highly oxygen-dependent group? Hovering performance of ruby-throated hummingbirds (Archilochus colubris) was manipulated non-invasively using hyperoxic but hypodense gas mixtures of sea-level air combined with heliox containing 35% O2. This manipulation sheds light on the interplay among metabolic power input, mechanical power output and aerodynamic force production in limiting flight performance. No significant differences in flight mechanics and oxygen consumption were identified between hyperoxic and normoxic conditions. Thus, at least in the present experimental context, hyperoxia did not change the major metabolic and mechanical parameters; O2 diffusive capacities of the respiratory system were probably not limiting to a significant extent. Compared with hummingbirds in our previous studies, the present experimental birds were heavier, had resultant shorter hover-feeding durations and experienced aerodynamic failure at higher air densities. Because hummingbirds have relatively stable wingbeat frequencies, modulation of power output was attained primarily through variation in stroke amplitude up to near 180 degrees. This result indicates that maximum hovering performance was constrained geometrically and that heavier birds with greater fat loads had less margin for enhancement of power production. Sexual dimorphism in flight adaptation also played a role, with males showing more limited hovering capacities, presumably as a trade-off for increased maneuverability.


2001 ◽  
Vol 204 (3) ◽  
pp. 495-507 ◽  
Author(s):  
M.R. Williamson ◽  
K.P. Dial ◽  
A.A. Biewener

In vivo measurements of pectoralis muscle length change and force production were obtained using sonomicrometry and delto-pectoral bone strain recordings during ascending and slow level flight in mallards (Anas platyrhynchos). These measurements provide a description of the force/length properties of the pectoralis under dynamic conditions during two discrete flight behaviors and allow an examination of the effects of differences in body size and morphology on pectoralis performance by comparing the results with those of a recent similar study of slow level flight in pigeons (Columbia livia). In the present study, the mallard pectoralis showed a distinct pattern of active lengthening during the upstroke. This probably enhances the rate of force generation and the magnitude of the force generated and, thus, the amount of work and power produced during the downstroke. The power output of the pectoralis averaged 17.0 W kg(−)(1)body mass (131 W kg(−)(1)muscle mass) during slow level flight (3 m s(−)(1)) and 23.3 W kg(−)(1)body mass (174 W kg(−)(1)muscle mass) during ascending flight. This increase in power was achieved principally via an increase in muscle strain (29 % versus 36 %), rather than an increase in peak force (107 N versus 113 N) or cycle frequency (8.4 Hz versus 8.9 Hz). Body-mass-specific power output of mallards during slow level flight (17.0 W kg(−)(1)), measured in terms of pectoralis mechanical power, was similar to that measured recently in pigeons (16.1 W kg(−)(1)). Mallards compensate for their greater body mass and proportionately smaller wing area and pectoralis muscle volume by operating with a high myofibrillar stress to elevate mechanical power output.


1981 ◽  
Vol 91 (1) ◽  
pp. 117-129 ◽  
Author(s):  
TIMOTHY M. CASEY

Mechanical power output, based on measured power input, is compared with calculated values for aerodynamic and inertial power output in sphinx moths ranging from 350 to 3400 mg. Aerodynamic power output, calculated from momentum and blade-element aerodynamic theories, scales with the 1.08 power of body mass, amounting to about 40% of the mechanical power output of large moths to about 15% in the smallest individuals. Calculated value for the inertial power cost of hovering represents a larger fraction of the mechanical power output than the aerodynamic cost in all moths, with the value increasing as body mass decreases. Independent estimates of inertial power output based on metabolic data are similar to those obtained from calculations of the moment of inertia for the wings. These data suggest that inertial power output represents the largest power requirement for hovering sphinx moths, and that elastic torques do not significantly reduce the mechanical power output. Higher mass-specific power input of small sphinx moths appears to be the result of greater mass-specific inertial power requirements. Estimates of flight cost based on morphology and flight mechanics of sphinx moths yield values for mechanical power output which are similar to values estimated from their flight metabolism.


Designs ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 31
Author(s):  
Giuseppe Bianchi ◽  
Sham Rane ◽  
Fabio Fatigati ◽  
Roberto Cipollone ◽  
Ahmed Kovacevic

The paper presents an extensive investigation of a small-scale sliding vane rotary expander operating with R245fa. The key novelty is in an innovative operating layout, which considers a secondary inlet downstream of the conventional inlet port. The additional intake supercharges the expander by increasing the mass of the working fluid in the working chamber during the expansion process; this makes it possible to harvest a greater power output within the same machine. The concept of supercharging is assessed in this paper through numerical computational fluid dynamics (CFD) simulations which are validated against experimental data, including the mass flow rate and indicated pressure measurements. When operating at 1516 rpm and between pressures of 5.4 bar at the inlet and 3.2 bar at the outlet, the supercharged expander provided a power output of 325 W. The specific power output was equal to 3.25 kW/(kg/s) with a mechanical efficiency of 63.1%. The comparison between internal pressure traces obtained by simulation and experimentally is very good. However, the numerical model is not able to account fully for the overfilling of the machine. A comparison between a standard and a supercharged configuration obtained by CFD simulation shows that the specific indicated power increases from 3.41 kW/(kg/s) to 8.30 kW/(kg/s). This large power difference is the result of preventing overexpansion by supercharging. Hence, despite the greater pumping power required for the increased flow through the secondary inlet, a supercharged expander would be the preferred option for applications where the weight of the components is the key issue, for example, in transport applications.


1994 ◽  
Vol 193 (1) ◽  
pp. 65-78 ◽  
Author(s):  
C J Barclay

The mechanical efficiency of mouse fast- and slow-twitch muscle was determined during contractions involving sinusoidal length changes. Measurements were made of muscle length, force production and initial heat output from bundles of muscle fibres in vitro at 31 degrees C. Power output was calculated as the product of the net work output per sinusoidal length cycle and the cycle frequency. The initial mechanical efficiency was defined as power output/(rate of initial heat production+power output). Both power output and rate of initial heat production were averaged over a full cycle of length change. The amplitude of length changes was +/- 5% of muscle length. Stimulus phase and duration were adjusted to maximise net work output at each cycle frequency used. The maximum initial mechanical efficiency of slow-twitch soleus muscle was 0.52 +/- 0.01 (mean +/- 1 S.E.M. N = 4) and occurred at a cycle frequency of 3 Hz. Efficiency was not significantly different from this at cycle frequencies of 1.5-4 Hz, but was significantly lower at cycle frequencies of 0.5 and 1 Hz. The maximum efficiency of fast-twitch extensor digitorum longus muscle was 0.34 +/- 0.03 (N = 4) and was relatively constant (0.32-0.34) over a broad range of frequencies (4-12 Hz). A comparison of these results with those from previous studies of the mechanical efficiency of mammalian muscles indicates that efficiency depends markedly on contraction protocol.


1995 ◽  
Vol 198 (4) ◽  
pp. 1065-1070 ◽  
Author(s):  
R Dudley

Limits to insect flight performance are difficult to evaluate because the full range of aerodynamic capabilities cannot be easily elicited or controlled. Invasive experimental manipulations, such as tethering and weight addition, may adversely affect the biomechanics of the flight system as a whole. Because air density is a major determinant of aerodynamic force production, gas mixtures of variable density can be used to investigate insect flight performance non-invasively. Three species of orchid bee hovering in heliox (80 % He/20 % O2) exhibited dramatic increases in lift and power output relative to flight in normal air. Stroke amplitude increased significantly in heliox, while wingbeat frequency was unchanged; the Reynolds numbers of the wings decreased on average by 41 %. Although lift performance of airfoils generally degrades at lower Reynolds numbers, mean lift coefficients in heliox increased significantly relative to values for hovering in normal air. Mean muscle mass-specific power output for flight in heliox mixtures ranged from 130 to 160 W kg-1, substantially exceeding values determined from isolated asynchronous muscle preparations as well as limits postulated from the results of load-lifting experiments. The use of variable-density gas mixtures to examine animal flight performance is a simple yet powerful manipulation that will permit a new evaluation of both insect and vertebrate flight mechanics.


Sign in / Sign up

Export Citation Format

Share Document