scholarly journals Effect of Hematocrit on Wall Shear Stress for Blood Flow through Tapered Artery

2013 ◽  
Vol 10 (2-3) ◽  
pp. 135-138 ◽  
Author(s):  
A. K. Singh ◽  
D. P. Singh

The purpose of this study to show the effects of Hematocrit (Red blood cells), height of stenosis, porous parameter and velocity of blood on wall shear stress of the flow of blood through tapered artery. The study reveals that wall shear stress reduces for increasing Hematocrit percentage. It is also observed that wall shear stress increases as stenosis height and porous parameter increase whereas it decreases with the increasing values of velocity of blood and slope of tapered artery.

2020 ◽  
pp. 2106-2114
Author(s):  
Sefiu Onitilo ◽  
Mustapha Usman ◽  
Deborah Daniel

In this paper, the effects of hematocrit of red blood cells on blood flow through a stenosed human carotid artery was considered by taking blood as a Newtonian fluid. The governing equations on blood flow were derived. The mathematical content involved in the equations are the variables of interest such as number of stenosis , percentage of hematocrit  of red blood cells in the blood, flow rate, wall shear stress, and viscosity of the blood. Guided by medical data collected on the constraint of blood flow in stenosed human carotid arteries, the governing equations were used to check the effects of pressure gradient, wall shear stress, velocity, and volumetric flow rate of blood in the human carotid arteries. Also, the one-dimensional equation for the steady and axially symmetric flow of blood through an artery was transformed using Einstein’s coefficient of viscosity and hematocrit of red blood cells with the help of the boundary conditions. The effects of hematocrit on the blood flow characteristics are shown graphically and discussed briefly. It was discovered that the resistance increases as the level of hematocrit increases. Also, the wall shear stress decreases with the increase in the hematocrit level of the red blood cells. 


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
J. V. Ramana Reddy ◽  
D. Srikanth

The blood flow through an overlapping clogged tapered artery in the presence of catheter is discussed. Since cholesterol deposition is resulting in the stenosis formation, velocity slip at the arterial wall is considered. The equations governing the fluid flow have been solved analytically under the assumption of the mild stenosis. The analysis with respect to various parameters arising out of fluid and geometry considered, on physiological parameters such as impedance and wall shear stress at the maximum height of the stenosis as well as across the entire length of the stenosis has been reported. A table summarizing the locations of extreme heights and the corresponding annular radii is provided. It is observed that the wall shear stress is the same at both the locations corresponding to the maximum height of the stenosis in case of nontapered artery while it varies in case of tapered artery. It is also observed that slip velocity and diverging tapered artery facilitate the fluid flow. Shear stress at the wall is increasing as micropolar parameter is decreasing and the trend is reversed in case of coupling number. The results obtained are validated by comparing them with the experimental and theoretical results.


2015 ◽  
Vol 08 (05) ◽  
pp. 1550064
Author(s):  
Noreen Sher Akbar ◽  
S. Nadeem

In the present paper, we have studied the blood flow through tapered artery with a stenosis. The non-Newtonian nature of blood in small arteries is analyzed mathematically by considering the blood as Phan-Thien–Tanner fluid. The representation for the blood flow is through an axially non-symmetrical but radially symmetric stenosis. Symmetry of the distribution of the wall shearing stress and resistive impedance and their growth with the developing stenosis is another important feature of our analysis. Exact solutions have been evaluated for velocity, resistance impedance, wall shear stress and shearing stress at the stenosis throat. The graphical results of different type of tapered arteries (i.e. converging tapering, diverging tapering, non-tapered artery) have been examined for different parameters of interest.


Author(s):  
Kimie Onogi ◽  
Kazuhiro Kohge ◽  
Kiyoshi Minemura

This article illustrates numerical results on pulsating blood flow through moderately stenosed blood vessel. Two kinds of waveform, that is, a purely sinusoidal waveform and a non-sinusoidal one just like human blood flow are calculated for two cases of heart rate as 60 and 160 (1/s), and resultant flow behavior such as flow velocities, secondary flow, wall shear stress and pressure change are discussed. The abrupt changes in the pressure and wall shear stress occur on the throat of the stenosis, suggesting that this part is easily damaged by the effects when the heart rate is increased.


2010 ◽  
Vol 2010 ◽  
pp. 1-26 ◽  
Author(s):  
D. S. Sankar

Pulsatile flow of a two-fluid model for blood flow through stenosed narrow arteries is studied through a mathematical analysis. Blood is treated as two-phase fluid model with the suspension of all the erythrocytes in the as Herschel-Bulkley fluid and the plasma in the peripheral layer as a Newtonian fluid. Perturbation method is used to solve the system of nonlinear partial differential equations. The expressions for velocity, wall shear stress, plug core radius, flow rate and resistance to flow are obtained. The variations of these flow quantities with stenosis size, yield stress, axial distance, pulsatility and amplitude are analyzed. It is found that pressure drop, plug core radius, wall shear stress and resistance to flow increase as the yield stress or stenosis size increases while all other parameters held constant. It is observed that the percentage of increase in the magnitudes of the wall shear stress and resistance to flow over the uniform diameter tube is considerably very low for the present two-fluid model compared with that of the single-fluid model of the Herschel-Bulkley fluid. Thus, the presence of the peripheral layer helps in the functioning of the diseased arterial system.


Author(s):  
Sapna Ratan Shah ◽  
S. U. Siddiqui

This study focuses on the behavior of blood flow through diseased artery in the presence of porous effects. The laminar, incompressible, fully developed, non-Newtonian in an artery having axially non-symmetric but radially symmetric stenosis is numerically studied. Here blood is represented as Herschel-Bulkley fluid model and flow model is shown by the Navier-Stokes and the continuity equations. Using appropriate boundary conditions, numerical expression for volumetric flow rate, pressure drop and wall shear stress have been derived. The expressions are computed numerically and results are presented graphically. The effects of porous parameter on wall shear stress, stenosis length, stenosis size and stenosis shape parameter are discussed. The wall shear stress increases as the porous parameter, stenosis size and stenosis length increases, but as the stenosis shape parameter increases, the wall shear stress decreases. The work shows that the results obtained from the porous wall model are significantly different from those obtained by the rigid wall model.


2014 ◽  
Vol 11 (4) ◽  
pp. 185-195 ◽  
Author(s):  
G. C. Shit ◽  
M. Roy ◽  
A. Sinha

This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions is solved by using a well known Frobenius method. The analytical expressions for velocity component, volumetric flow rate, wall shear stress and pressure gradient are obtained. The numerical values are extracted from these analytical expressions and are presented graphically. It is observed that the influence of hematocrit, magnetic field and the shape of artery have important impact on the velocity profile, pressure gradient and wall shear stress. Moreover, the effect of primary stenosis on the secondary one has been significantly observed.


Author(s):  
F. Kh. Tazyukov ◽  
H. A. Khalaf ◽  
Jafar M. Hassan

The problems of non-Newtonian blood flow through a stenosed artery are solved numerically using Finite Volume Method where the non-Newtonian rheology of the flowing blood is characterised by the Generalised Power-law, Carreau-Yasuda and Cross models. In view of the haemodynamical mechanisms related to atherosclerosis formation and the role of the wall shear stress in initiating and further developing of the disease, the investigation is focused on the two-dimensional flow field and in particular on the distribution of the wall shear stress in the vicinity of the stenosis. A comparison is made between the effects of each rheological model on the aforementioned parameters for different Re number.


Sign in / Sign up

Export Citation Format

Share Document