Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems

2018 ◽  
Author(s):  
Samantha Seah
2018 ◽  
Author(s):  
Xiannian Zhang ◽  
Tianqi Li ◽  
Feng Liu ◽  
Yaqi Chen ◽  
Jiacheng Yao ◽  
...  

SummarySince its establishment in 2009, single-cell RNA-seq has been a major driver behind progress in biomedical research. In developmental biology and stem cell studies, the ability to profile single cells confers particular benefits. While most studies still focus on individual tissues or organs, the recent development of ultra-high-throughput single-cell RNA-seq has demonstrated potential power in characterizing more complex systems or even the entire body. However, although multiple ultra-high-throughput single-cell RNA-seq systems have attracted attention, no systematic comparison of these systems has been performed. Here, we focus on three widely used droplet-based ultra-high-throughput single-cell RNA-seq systems, inDrop, Drop-seq, and 10X Genomics Chromium. While each system is capable of profiling single-cell transcriptomes, their detailed comparison revealed the distinguishing features and suitable applications for each system.


2019 ◽  
Vol 73 (1) ◽  
pp. 130-142.e5 ◽  
Author(s):  
Xiannian Zhang ◽  
Tianqi Li ◽  
Feng Liu ◽  
Yaqi Chen ◽  
Jiacheng Yao ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tracy M. Yamawaki ◽  
Daniel R. Lu ◽  
Daniel C. Ellwanger ◽  
Dev Bhatt ◽  
Paolo Manzanillo ◽  
...  

Abstract Background Elucidation of immune populations with single-cell RNA-seq has greatly benefited the field of immunology by deepening the characterization of immune heterogeneity and leading to the discovery of new subtypes. However, single-cell methods inherently suffer from limitations in the recovery of complete transcriptomes due to the prevalence of cellular and transcriptional dropout events. This issue is often compounded by limited sample availability and limited prior knowledge of heterogeneity, which can confound data interpretation. Results Here, we systematically benchmarked seven high-throughput single-cell RNA-seq methods. We prepared 21 libraries under identical conditions of a defined mixture of two human and two murine lymphocyte cell lines, simulating heterogeneity across immune-cell types and cell sizes. We evaluated methods by their cell recovery rate, library efficiency, sensitivity, and ability to recover expression signatures for each cell type. We observed higher mRNA detection sensitivity with the 10x Genomics 5′ v1 and 3′ v3 methods. We demonstrate that these methods have fewer dropout events, which facilitates the identification of differentially-expressed genes and improves the concordance of single-cell profiles to immune bulk RNA-seq signatures. Conclusion Overall, our characterization of immune cell mixtures provides useful metrics, which can guide selection of a high-throughput single-cell RNA-seq method for profiling more complex immune-cell heterogeneity usually found in vivo.


2017 ◽  
Vol 37 (17) ◽  
pp. 12-13
Author(s):  
Jennifer Chew ◽  
Adam Bemis ◽  
Ronald Lebofsky ◽  
Anna Quinlan ◽  
Kelly Kaihara
Keyword(s):  

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Amir Alavi ◽  
Matthew Ruffalo ◽  
Aiyappa Parvangada ◽  
Zhilin Huang ◽  
Ziv Bar-Joseph

2020 ◽  
Author(s):  
Viacheslav Mylka ◽  
Jeroen Aerts ◽  
Irina Matetovici ◽  
Suresh Poovathingal ◽  
Niels Vandamme ◽  
...  

ABSTRACTMultiplexing of samples in single-cell RNA-seq studies allows significant reduction of experimental costs, straightforward identification of doublets, increased cell throughput, and reduction of sample-specific batch effects. Recently published multiplexing techniques using oligo-conjugated antibodies or - lipids allow barcoding sample-specific cells, a process called ‘hashing’. Here, we compare the hashing performance of TotalSeq-A and -C antibodies, custom synthesized lipids and MULTI-seq lipid hashes in four cell lines, both for single-cell RNA-seq and single-nucleus RNA-seq. Hashing efficiency was evaluated using the intrinsic genetic variation of the cell lines. Benchmarking of different hashing strategies and computational pipelines indicates that correct demultiplexing can be achieved with both lipid- and antibody-hashed human cells and nuclei, with MULTISeqDemux as the preferred demultiplexing function and antibody-based hashing as the most efficient protocol on cells. Antibody hashing was further evaluated on clinical samples using PBMCs from healthy and SARS-CoV-2 infected patients, where we demonstrate a more affordable approach for large single-cell sequencing clinical studies, while simultaneously reducing batch effects.


2019 ◽  
Vol 4 (4) ◽  
pp. 683-692 ◽  
Author(s):  
Mariona Nadal-Ribelles ◽  
Saiful Islam ◽  
Wu Wei ◽  
Pablo Latorre ◽  
Michelle Nguyen ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Chi-Ming Kevin Li ◽  
Tracy M Yamawaki ◽  
Daniel R Lu ◽  
Daniel C Ellwanger ◽  
Dev Bhatt ◽  
...  

Abstract Background: Elucidation of immune populations with single-cell RNA-seq has greatly benefited the fieldof immunology by deepening the characterization of immune heterogeneity and leading to thediscovery of new subtypes. However, single-cell methods inherently suffer from limitations in therecovery of complete transcriptomes due to the prevalence of cellular and transcriptional dropoutevents. This issue is often compounded by limited sample availability and limited prior knowledge ofheterogeneity, which can confound data interpretation.Results: Here, we systematically benchmarked seven high-throughput single-cell RNA-seq methods. Weprepared 21 libraries under identical conditions of a defined mixture of two human and two murinelymphocyte cell lines, simulating heterogeneity across immune-cell types and cell sizes. We evaluatemethods by their cell recovery rate, library efficiency, sensitivity, and ability to recover expressionsignatures for each cell type. We observed higher mRNA detection sensitivity with the 10x Genomics 5’v1 and 3’ v3 methods. We demonstrate that these methods have fewer drop-out events whichfacilitates the identification of differentially-expressed genes and improves the concordance of singlecellprofiles to immune bulk RNA-seq signatures.Conclusion: Overall, our characterization of immune cell mixtures provides useful metrics, which canguide selection of a high-throughput single-cell RNA-seq method for profiling more complex immunecellheterogeneity usually found in vivo.


2018 ◽  
Vol 52 (1) ◽  
pp. 203-221 ◽  
Author(s):  
Kenneth D. Birnbaum

The growing scale and declining cost of single-cell RNA-sequencing (RNA-seq) now permit a repetition of cell sampling that increases the power to detect rare cell states, reconstruct developmental trajectories, and measure phenotype in new terms such as cellular variance. The characterization of anatomy and developmental dynamics has not had an equivalent breakthrough since groundbreaking advances in live fluorescent microscopy. The new resolution obtained by single-cell RNA-seq is a boon to genetics because the novel description of phenotype offers the opportunity to refine gene function and dissect pleiotropy. In addition, the recent pairing of high-throughput genetic perturbation with single-cell RNA-seq has made practical a scale of genetic screening not previously possible.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0116328 ◽  
Author(s):  
Assaf Rotem ◽  
Oren Ram ◽  
Noam Shoresh ◽  
Ralph A. Sperling ◽  
Michael Schnall-Levin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document