Tension-compression stress-strain curves from bending tests

1971 ◽  
Vol 6 (4) ◽  
pp. 286-292 ◽  
Author(s):  
P W J Oldroyd

A formula—Nadai's bending formula—is derived which enables the tension (or compression) stress-strain curve for a material to be obtained from the curve relating bending moment to curvature for a beam of solid rectangular section. The method is extended to give a formula which covers deformations in which reversals of plastic strain occur. The results obtained from a unidirectional bending test made on annealed copper are compared with those obtained from a tensile test made on the same material and the accuracy of the stress-strain values obtained from the bending test is discussed. The results obtained from a reversed bending test are also compared with those obtained from a tension-compression test in which a specimen was first stretched and then compressed to its original length. The limitations imposed by this method of obtaining the stress-strain curve for a material are examined and the advantages its presents in the study of the behaviour of materials under uniaxial stress are outlined.

2020 ◽  
Vol 10 (10) ◽  
pp. 3351
Author(s):  
Bo Ke ◽  
Jian Zhang ◽  
Hongwei Deng ◽  
Xiangru Yang

The effect of temperature fluctuation on rocks needs to be considered in many civil engineering applications. Up to date the dynamic characteristics of rock under freeze-thaw cycles are still not quite clearly understood. In this study, the dynamic mechanical properties of sandstone under pre-compression stress and freeze-thaw cycles were investigated. At the same number of freeze-thaw cycles, with increasing axial pre-compression stress, the dynamic Young’s modulus and peak stress first increase and then decrease, whereas the dynamic peak strain first decreases and then increases. At the same pre-compression stress, with increasing number of freeze-thaw cycles, the peak stress decreases while the peak strain increases, and the peak strain and peak stress show an inverse correlation before or after the pre-compression stress reaches the densification load of the static stress–strain curve. The peak stress and strain both increase under the static load near the yielding stage threshold of the static stress–strain curve. The failure mode is mainly shear failure, and with increasing axial pre-compression stress, the degree of shear failure increases, the energy absorption rate of the specimen increases first and then decreases. With increasing number of freeze-thaw cycles, the number of fragments increases and the size diminishes, and the energy absorption rates of the sandstone increase.


2004 ◽  
Vol 2004.1 (0) ◽  
pp. 195-196
Author(s):  
Akihiro HOJO ◽  
Akiyosi CHATANI ◽  
Hiroshi TACHIYA

Author(s):  
G. S. Schajer ◽  
Y. An

Uniaxial tension and compression stress-strain curves are simultaneously evaluated from load and surface strain data measured during a bending test. The required calculations for the uniaxial results are expressed as integral equations and solved in that form using inverse methods. This approach is taken to reduce the extreme numerical sensitivity of calculations based on equations expressed in differential form. The inverse solution method presented addresses the numerical sensitivity issue by using Tikhonov regularization. The use of a priori information is explored as a means of further stabilizing the stress-strain curve evaluation. The characteristics of the inverse solution are investigated using experimental data from bending and uniaxial tests.


2014 ◽  
Vol 597 ◽  
pp. 17-20
Author(s):  
Ikuo Ihara ◽  
Kohei Ohtsuki ◽  
Iwao Matsuya

A nanoindentation technique with a spherical indenter of tip radius 10 μm is applied to the evaluation of stress-strain curve at a local area of a pure iron under the uniaxial compressive stress exerted through the iron, and the influence of the compressive stress on the estimated stress-strain curve has been examined. A continuous multiple loading method is employed to determine the stress-strain curve. In the method, a set of 21 times of loading/unloading sequences with increasing terminal load are made and load-displacement curves with the different terminal loads from 0.1 mN to 100 mN are then continuously obtained and converted to a stress-strain curve. To examine the stress dependence of the stress-strain curve, the estimation by the nanoindentetion is performed under different uniaxial compressive stresses up to 250 MPa. It has been found that the stress-strain curve determined by the nanoindentation shifts upward as the compressive stress increases and the quantity of the shift is almost equal to the uniaxial stress acting on the iron specimen. It is also noted that the yield stress (0.2 % proof stress) estimated from the stress-strain curve increases almost proportionally to the uniaxial stress and the increase ratio tends to decrease as the stress reaches around 200 MPa.


1968 ◽  
Vol 3 (4) ◽  
pp. 313-324 ◽  
Author(s):  
D J White ◽  
M Radomski

Cyclic plastic-straining tests with controlled deflections have been conducted on beams subject to uniform bending, three-point bending, and a cosine distribution of bending moment; the second and third beams represent cases of strain concentration. Three different materials were used, namely mild steel, stainless steel, and aluminium. The strain-concentration tests show stainless steel and aluminium to be more resistant to deflection cycling than mild steel. A similar difference is not found in the uniform bending tests to anything like the same extent. Stainless steel shows a more pronounced strain-hardening characteristic in the cyclic stress-strain curve than does mild steel and it is concluded that this produces a more favourable strain distribution along the length of the beam, so that the maximum strain is less and the endurance is correspondingly greater. For materials which show settled cyclic stress-strain relations, reasonable predictions may be made of life in deflection cycling of beams under strain-concentration conditions if the strains are calculated from the cyciic relations and the corresponding endurance is obtained from uniform bending tests. If, for design purposes, the strains determining the life are calculated from monotonic stress-strain relations, the design will be safe, provided the material does not soften with cyclic straining.


1981 ◽  
Vol 16 (2) ◽  
pp. 107-110 ◽  
Author(s):  
J Margetson

A uniaxial stress/strain curve is represented empirically by a modified Ramberg-Osgood equation ∊=(σ/E) + (σ/σo)m. Firstly E is extracted then σo and m are determined from two points on the experimental curve. These values are improved iteratively by a least squares fit using all the experimental points on the curve. The procedure is used to generate stress/strain relationships for a variety of materials and there is good agreement with the experimental values. The method is also applied to a simulated aerodynamic heating experiment.


Sign in / Sign up

Export Citation Format

Share Document