Mechanical, micro-, and macrostructural analysis of AA7075–T6 fabricated by friction stir butt welding with different rotational speeds and tool pin profiles

Author(s):  
P Bahemmat ◽  
M K Besharati ◽  
M Haghpanahi ◽  
A Rahbari ◽  
R Salekrostam
Keyword(s):  
Author(s):  
S.T. Selvamani ◽  
M. Vigneshwar ◽  
S. Divagar

In this research work, the effects of heat transfer on microhardness, microstructures of friction stir welded AA 6061-T6 Aluminum alloy butt joints advancing side and retreating side are analyzed. A three dimensional finite element model is developed to study the thermal history in the butt welding of AA 6061 aluminum alloy using ANSYS package. Solid 70 elements are used to develop the model and a moving co-ordinate has been introduced to model the three-dimensional heat transfer process because it reduces the difficulty of modeling the moving tool. In this model, the main parameter considered is the heat input from the tool shoulder and tool pin. As a result, the temperature distributions of the weld at a welding speed of 1.25mm/sec were obtained.


2013 ◽  
Vol 71 (1-4) ◽  
pp. 81-90 ◽  
Author(s):  
Afshin Emamikhah ◽  
Alireza Abbasi ◽  
Ali Atefat ◽  
M. K. Besharati Givi

Author(s):  
Sanjeev Verma ◽  
Vinod Kumar

Aluminium and its alloys are lightweight, corrosion-resistant, affordable and high-strength material and find wide applications in shipbuilding, automotive, constructions, aerospace and other industrial sectors. In applications like aerospace, marine and automotive industries, there is a need to join components made of different aluminium alloys, viz. AA6061 and AA5083. In this study friction stir welding (FSW) is used to join dissimilar plates made of AA6061-T6 and AA5083-O. The effect of varying tool pin profile, tool rotation speed, tool feed rate and tilt angle of the tool has been investigated on the tensile strength and percentage elongation of the welded joints. Box-Behkan design, with four input parameters and three levels of each parameter has been employed to decide the set of experimental runs. The regression models have been developed to investigate the influence of welding variables on the tensile strength and elongation of the welded joint. It is revealed that with the increase in welding parameters like tool rpm, tool feed rate and tilt angle of the tool, both the mechanical properties increase, reach a maximum level, followed by a decrease with further increase in the value of parameters. Amongst different types of tool pin profiles used, the FSW tool having straight cylindrical (SC) pin profile is found to yield the maximum strength and elongation of the welded joint for different combinations of welding parameters. Multiple response optimization indicates that the maximum UTS (135.83 MPa) and TE (4.35%) are obtained for the welded joint fabricated using FSW tool having SC pin profile, tilted at 1.11° and operating at tool speed and feed rate of 1568 rpm and 39.53 mm/min., respectively.


2012 ◽  
Vol 622-623 ◽  
pp. 323-329
Author(s):  
Ebtisam F. Abdel-Gwad ◽  
A. Shahenda ◽  
S. Soher

Friction stir welding (FSW) process is a solid state welding process in which the material being welded does not melt or recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand effects of process parameters include rotation speeds, welding speeds, and pin diameters on al.uminum weldment using double shoulder tools. Thermal and tensile behavior responses were examined. In this direction temperatures distribution across the friction stir aluminum weldment were measured, besides tensile strength and ductility were recorded and evaluated compared with both single shoulder and aluminum base metal.


2015 ◽  
Vol 6 (1) ◽  
pp. 51-55 ◽  
Author(s):  
D. Trimble ◽  
H. Mitrogiannopoulos ◽  
G. E. O'Donnell ◽  
S. McFadden

Abstract. Some aluminium alloys are difficult to join using traditional fusion (melting and solidification) welding techniques. Friction Stir Welding (FSW) is a solid-state welding technique that can join two plates of material without melting the workpiece material. This proecess uses a rotating tool to create the joint and it can be applied to alumium alloys in particular. Macrostructure, microstructure and micro hardness of friction stir welded AA2024-T3 joints were studied. The influence of tool pin profile on the microstructure and hardness of these joints was examined. Square, triflute and tapered cylinder pins were used and results from each weldment are reported. Vickers micro hardness tests and grain size measurements were taken from the transverse plane of welded samples. Distinct zones in the macrostructure were evident. The zones were identified by transitions in the microstructure and hardness of weld samples. The zones identified across the sample were the the unaffected parent metal, the Heat Affected Zone (HAZ), the Thermo-Mechanicaly Affected Zone (TMAZ), and the Nugget Zone (NZ). Measured hardness values varied through each FSW zone. The hardness in each zone was below that of the parent material. The HAZ had the lowest hardness across the weld profile for each pin type tested. The cylindrical pin consistently produced tunnel and joint-line defects. Pin profiles with flat surface features and/or flutes produced consolidated joints with no defects.


2015 ◽  
Vol 76 ◽  
pp. 522-527
Author(s):  
M. Shamil Jaffarullah ◽  
Nur’Amirah Busu ◽  
Cheng Yee Low ◽  
J.B. Saedon ◽  
Armansyah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document