Thermal post-buckling analysis of a laminated composite spherical shell panel embedded with shape memory alloy fibres using non-linear finite element method

Author(s):  
S K Panda ◽  
B N Singh

In this article, the buckling and post-buckling behaviours of a laminated composite spherical shallow shell panel embedded with shape memory alloy (SMA) fibres are studied under a thermal environment. System equations for a laminated composite spherical shell panel embedded with SMA fibres are for the first time derived by modelling the geometric non-linearity in the Green—Lagrange sense and the material non-linearity in SMA fibres in the framework of the higher-order shear deformation theory. The shell panel model is discretized by using a non-linear finite-element approach. The governing algebraic equations are then derived by the variational approach and solved using a direct iterative technique. Influences of the thickness ratio, boundary condition, aspect ratio, curvature ratio, lamination scheme, SMA volume fraction, percentage of prestrain, and amplitude ratio on the buckling and post-buckling temperatures of a laminated composite shell panel with and without SMA have been examined in detail. The results are computed using the present model and compared with those available in the literature.

2014 ◽  
Vol 6 ◽  
pp. 632825 ◽  
Author(s):  
Zainudin A. Rasid ◽  
Rizal Zahari ◽  
Amran Ayob

Shape memory alloy (SMA) wires were embedded within laminated composite plates to take advantage of the shape memory effect property of the SMA in improving post-buckling behavior of composite plates. A nonlinear finite element formulation was developed for this study. The plate-bending formulation used in this study was developed based on the first order shear deformation theory, where the von Karman's nonlinear moderate strain terms were added to the strain equations. The effect of the SMA was captured by adding recovery stress term in the constitutive equation of the SMA composite plates. Values of the recovery stress of the SMA were determined using Brinson's model. Using the principle of virtual work and the total Lagrangian approach, the final finite element nonlinear governing equation for the post-buckling of SMA composite plates was derived. Buckling and post-buckling analyses were then conducted on the symmetric angle-ply and cross-ply SMA composite plates. The effect of several parameters such as the activation temperature, volume fraction, and the initial strain of the SMA on the post-buckling behavior of the SMA composite plates were studied. It was found that significant improvements in the post-buckling behavior for composite plates can be attained.


2011 ◽  
Vol 311-313 ◽  
pp. 2235-2238
Author(s):  
Zainudin A Rasid ◽  
Rizal Zahari ◽  
Ayob Amran ◽  
Dayang Laila Majid ◽  
Ahmad Shakrine M. Rafie

Shape memory alloy was firstly used commercially as a hydraulic coupling in the Grumman F14A in 1971. It is today used among others to improve structural behaviours such as buckling of composite plates in the aerospace vehicles. In this paper, finite element model and its source code for thermal post-buckling of shape memory alloy laminated composite plates is presented. The shape memory alloy wires induced stress that improved the strain energy, stiffness and thus the buckling behaviour of the composite plates. The finite element formulation catered the combined properties of the composite and shape memory alloys, the addition of the recovery stress and the temperature dependent properties of the shape memory alloys and the composite matrix. This study showed that by embedding shape memory alloy within layers of composite plates, post-buckling behaviours of composite plates can be improved substantially.


2011 ◽  
Vol 471-472 ◽  
pp. 536-541 ◽  
Author(s):  
Zainudin A. Rasid ◽  
Ayob Amran ◽  
Rizal Zahari ◽  
Faizal Mustapha ◽  
D.L. Majid ◽  
...  

Thermal buckling and thermal post-buckling behaviours of laminated composite plates are improved by embedding shape memory alloy wires within laminates of composite plates. The procedure is to use the recovery stress that is induced when the reverse transformation of the shape memory alloy from martensite to austenite phases is constrained. For aerospace applications where the source of the shape memory alloy heating is the high temperature environment itself, a study is conducted to see the effect of shape memory alloy in improving the thermal buckling and post-buckling of composite plates. Due to the temperature dependent nature of the composite matrix and the shape memory alloy, the finite element formulation developed here is in the incremental form. Solving this non-linear model using the developed in-house source code, critical loads are determined and the post-buckling paths of the shape memory alloy composite plates are traced. This study shows that by embedding the shape memory alloy within composite plates, the thermal buckling and post-buckling behaviours of composite plates can be improved substantially.


Author(s):  
Mahshad Fani ◽  
Fathollah Taheri-Behrooz

Shape memory alloys are used in composite structures due to their shape memory effect and phase transformation. The recovery force of the shape memory alloy improves the post-buckling behavior of the structure. In this study, the thermal buckling and post-buckling of Shape Memory Alloy (SMA) hybrid composite laminated beam subjected to uniform temperature distribution is investigated. To this purpose, considering Von-Karman non-linear strain terms for large deformation, the non-linear equations of SMA reinforced beam based on Reddy Bickford theory have been derived. Besides, the recovery stress of the restrained SMA wires during martensitic transformation was calculated based on the one-dimensional constitutive law of the Brinson’s model. A numerical solution using Galerkin’s method has been presented for solving the nonlinear partial differential equations to obtain the critical buckling temperature and transverse deformation of the beam in the post-buckling region in both symmetric and anti-symmetric layups. The effect of SMA volume fraction, pre-strain, the boundary condition of the beam, stacking sequence, and its geometric properties have been studied. The results show that even by adding a small amount of SMA to the composite, the critical buckling temperature increases significantly, and the beam deflection decreases. Besides, using this theory has an evident effect on the anti-symmetric layup, especially for the thick beams.


2011 ◽  
Vol 471-472 ◽  
pp. 530-535 ◽  
Author(s):  
Zainudin A. Rasid ◽  
Ayob Amran ◽  
Rizal Zahari ◽  
Faizal Mustapha ◽  
D.L. Majid ◽  
...  

The improvements of buckling and post-buckling behaviours of laminated composite plates were done by changing the composite related parameters such as the level of anisotropy, thickness to width ratio and boundary condition. In recent years, shape memory alloy has been used to achieve such improvements. A study is conducted on the buckling and post-buckling improvements of composite plates due to the combined effects of composite and shape memory alloy related parameters. Shape memory alloy wires are embedded within laminated composite plates and the amount of recovery stress induced by the shape memory wires is predicted using the Brinson’s model. A geometric non-linear finite element method is used to model the buckling and post-buckling behaviours of shape memory alloy composite plates and source codes are developed to solve the model. It is found that significant improvements in buckling and post-buckling behaviours of composite plates can be attained by combining the effect of shape memory alloy and composite related parameters.


2012 ◽  
Vol 445 ◽  
pp. 577-582
Author(s):  
Zainudin A. Rasid ◽  
Saiful Amri Mazlan ◽  
Amran Ayob ◽  
Rizal Zahari ◽  
Dayang Laila Majid ◽  
...  

2017 ◽  
Vol 52 (8) ◽  
pp. 1089-1101 ◽  
Author(s):  
SMR Khalili ◽  
A Saeedi

The response of laminated hybrid composite beam with embedded shape memory alloy wires subjected to impact of multiple masses is analytically investigated. Two degree of freedom spring-mass system and Fourier series are used in order to study the low velocity impact phenomenon on the resulting hybrid composite beam. A linearized contact law is chosen to calculate the contact force history. The effect of pseudo elasticity of wires as well as the recovery stresses generated in shape memory alloy wires due to shape memory effect is investigated. The beam is subjected to impactors with various masses, radii, and initial velocities. Impacts are occurred on the top and/or bottom surface of the beam. The effects of volume fraction of shape memory alloy wires, location of embedded wires, location of impacts and pre-strain in shape memory alloy wires on the contact force history and the deflection curve of the beam are investigated. The obtained results illustrated that embedding shape memory alloy wires in the laminated composite beam caused the deflection of the beam to occur more local at the points of impact, in comparison with the beams without shape memory alloy wires. Moreover, embedding 0.2 volume fraction of the shape memory alloy wires reduced the maximum deflection of the beam subjected to impact of 2 impactor masses by 57% and 3 impactor masses (on both sides) by 12%. Pre-straining the wires caused more reduction in deflection of the beam under impact loading.


Author(s):  
W. F. Zhong ◽  
J. Zou ◽  
S. B. Tang

Abstract In this paper a finite element mode of classical symmetrically laminated composite plates embedded with shape memory alloy fibers is developed. The young’s modulus and recovery stress of SMA are calculated by using Brinson’s one-dimensional constitutive relation. The analysis of deflection and free vibration show that the SMA can reduce the deflection and increase the vibration frequencies significantly, and it is a economical and efficient design to place SMA fibers in the outer-most plies for utilizing their tuning function.


Sign in / Sign up

Export Citation Format

Share Document