Performance prediction of axial flow compressors using stage characteristics and simultaneous calculation of interstage parameters

Author(s):  
T. W. Song ◽  
T. S. Kim ◽  
J. H. Kim ◽  
S. T. Ro

A new method for predicting performance of multistage axial flow compressors is proposed that utilizes stage performance curves. The method differs from the conventional sequential stage-stacking method in that it employs simultaneous calculation of all interstage variables (temperature, pressure and flow velocity). A consistent functional formulation of governing equations enables this simultaneous calculation. The method is found to be effective, i.e. fast and stable, in obtaining solutions for compressor inlet and outlet boundary conditions encountered in gas turbine analyses. Another advantage of the method is that the effect of changing the angles of movable stator vanes on the compressor's operating behaviour can be simulated easily. Accordingly, the proposed method is very suitable for complicated gas turbine system analysis. This paper presents the methodology and performance estimation results for various multistage compressors employing both fixed and variable vane setting angles. The effect of interstage air bleeding on compressor performance is also demonstrated.

Author(s):  
MR Aligoodarz ◽  
A Mehrpanahi ◽  
M Moshtaghzadeh ◽  
A Hashiehbaf

A worldwide effort has been devoted to developing highly efficient and reliable gas turbine engines. There exist many prominent factors in the development of these engines. One of the most important features of the optimal design of axial flow compressors is satisfying the allowable range for various parameters such as flow coefficient, stage loading, the degree of reaction, De-Haller number, etc. But, there are some applicable cases that the mentioned criteria are exceeded. One of the most famous parameters is De-Haller number, which according to literature data should not be kept less than 0.72 in any stage of the axial compressor. A deep insight into the current small- or large-scale axial flow compressors shows that a discrepancy will occur among design criterion for De-Haller number and experimental measurements in which the De-Haller number is less than the design limit but no stall or surge is observed. In this paper, an improved formulation is derived based on one-dimensional modeling for predicting the stall-free design parameter ranges especially stage loading, flow coefficient, etc. for various combinations. It was found that the current criterion is much more accurate than the De-Haller criterion for design purposes.


Author(s):  
Giovanni Cataldi ◽  
Harald Gu¨ntner ◽  
Charles Matz ◽  
Tom McKay ◽  
Ju¨rgen Hoffmann ◽  
...  

High fogging is a power augmentation device where water is sprayed upstream of the compressor inlet with higher mass flow than that which would be needed to saturate the intake air. The main focus of this paper is on applications of high fogging on the ALSTOM gas turbine engines of the family GT24/GT26. Engine operation and performance are illustrated based on test results obtained from four different engines that have meanwhile accumulated more than 12’000 operating hours (OH) in commercial operation with ALSTOM’s ALFog® high fogging system. The effect of internal cooling (water evaporation inside the compressor) is investigated considering actual compressor boundaries matched within the complete engine. Changes in the secondary air system (SAS) and corresponding movement of the engine operating line have been taken into account. Power output gain as high as 7.1% was experimentally demonstrated for injected water mass fraction (f = mH2O/mair) equal to 1% and considering internal cooling effects only. Higher figures can be obtained for operation at low ambient relative humidity and partial evaporation upstream of the compressor inlet.


Author(s):  
Gajanana B. Hegde ◽  
Bhupendra Khandelwal ◽  
Vishal Sethi ◽  
Riti Singh

The most uncertain and challenging part in the design of a gas turbine has long been the combustion chamber. There has been large number of experimentations in industries and universities alike to better understand the dynamic and complex processes that occur inside a combustion chamber. This study concentrates on gas turbine combustors as a whole, and formulates a theoretical design procedure for staged combustors in particular. Not much of literatures available currently in public domain provide intensive study on designing staged combustors. The work covers an extensive study of design methods applied in conventional combustor designs, which includes the reverse flow combustor and the axial flow annular combustors. The knowledge acquired from this study is then applied to develop a theoretical design methodology for double staged (radial and axial) low emission annular combustors. Additionally a model combustor is designed for each type; radial and axial staging using the developed methodology. A prediction of the performance for the model combustors is executed. The main conclusion is that the dimensions of model combustors obtained from the developed design methodology are within the feasibility limits. The comparison between the radially staged and the axially staged combustor has yielded the predicted results such as lower NOx prediction for the latter and shorter combustor length for the former. The NOx emission result of the new combustor models are found to be in the range of 50–60ppm. However the predicted NOx results are only very crude and need further detailed study.


Author(s):  
Giorgio Cau ◽  
Daniele Cocco

The paper is concerned with thermochemical recuperation in semi-closed gas turbine systems. Semi-closed turbines use CO2 as the main working fluid and the combustion process takes place with pure oxygen, allowing the CO2 produced to be easily removed. On the other hand, the exhaust heat recovery through thermochemical recuperation offers interesting capabilities in terms of high conversion efficiency and low polluting emissions. System analysis and performance evaluation of the semi-closed, chemically recuperated gas turbine systems has been conducted and their performance assessed. A comparative analysis of semi-closed and open gas turbine cycles, with and without thermochemical recuperation, has been also carried out. The results of the analysis show that thermochemical recuperation in semi-closed gas turbine systems can allow to remove the CO2 with high cycle efficiency and specific power.


2008 ◽  
Vol 238 (12) ◽  
pp. 3379-3388 ◽  
Author(s):  
Ji Hwan Kim ◽  
Hee Cheon No ◽  
Hyeun Min Kim ◽  
Hong Sik Lim

2000 ◽  
Vol 122 (4) ◽  
pp. 761-768 ◽  
Author(s):  
Z. S. Spakovszky

A new analytical model to predict the aerodynamic forces in axial flow compressors due to asymmetric tip-clearance is introduced. The model captures the effects of tip-clearance induced distortion (i.e., forced shaft whirl), unsteady momentum-induced tangential blade forces, and pressure-induced forces on the spool. Pressure forces are shown to lag the tip-clearance asymmetry, resulting in a tangential (i.e., whirl-inducing) force due to spool pressure. This force can be of comparable magnitude to the classical Alford force. Prediction and elucidation of the Alford force is also presented. In particular, a new parameter denoted as the blade loading indicator is deduced. This parameter depends only on stage geometry and mean flow and determines the direction of whirl tendency due to tangential blade loading forces in both compressors and turbines. All findings are suitable for incorporation into an overall dynamic system analysis and integration into existing engine design tools. [S0889-504X(00)01604-4]


Author(s):  
Sepehr Sanaye ◽  
Arash Moradi

The turbine inlet gas temperature ( Toso ) is an important parameter in design and performance analysis of gas turbine cycles. By increasing Toso, air bleeding for blade cooling increases and it can be about 25 percent of compressor inlet air mass flow rate for Toso equal to 1600 K. Therefore air bleeding has an important impact on thermal efficiency, specific power output and the optimum compressor pressure ratio at which maximum efficiency occurs. For the gas turbine part of a combined cycle, these performance curves are obtained and shown using a developed simulation program (GTE). Also for heat recovery steam generator (HRSG) part of a combined cycle plant, HRSG simulates the transient and steady state temperature distribution of hot gases, steam and tube metal at different parts of HRSG. Any number of pressure levels (high, intermediate and low) and heating elements (superheater, evaporator and economizer) including desuperheater and deaerator can be included. GTE outputs show less than two percent difference from reported measured values. This difference was less than six percent for HRSG model.


2010 ◽  
Vol 43 (2) ◽  
Author(s):  
О.І. Запорожець ◽  
В.І. Савченко ◽  
С.В. Карпенко

2016 ◽  
pp. 107-115 ◽  
Author(s):  
S. I. Perevoschikov

The dependences were obtained which enable to determine the values of the performance factors of gas- turbine units such as gas turbines and axial-flow compressors. The results of testing of the received relations applicability for practical calculations are presented. The test showed the dependences validity for real processes.


Sign in / Sign up

Export Citation Format

Share Document