scholarly journals The benefits of turbine endwall profiling in a cascade

Author(s):  
G Ingram ◽  
D Gregory-Smith ◽  
N Harvey

Non-axisymmetric profiled endwalls have been shown to reduce losses and secondary flow both in cascades and in rig tests. This paper presents experimental results which quantify the benefits of loss reduction in the cascade with particular attention to accuracy. The paper compares the benefits achieved in experiment to the results predicted by computational fluid dynamics (CFD). The results show that both the experiment and CFD give significant reductions in secondary flow. A reduction of 31 per cent in secondary loss has been measured for the best case, but the CFD gives only a small reduction in loss. Previous studies on the planar endwall have shown significant areas of transitional flow, so the surface flow has been studied with the aid of surface-mounted hot films. It was concluded that the loss reductions were not due to changes in regions of laminar and turbulent flow.

2005 ◽  
Vol 498-499 ◽  
pp. 179-185
Author(s):  
A.F. Lacerda ◽  
Luiz Gustavo Martins Vieira ◽  
A.M. Nascimento ◽  
S.D. Nascimento ◽  
João Jorge Ribeiro Damasceno ◽  
...  

A two-dimensional fluidynamics model for turbulent flow of gas in cyclones is used to evaluate the importance of the anisotropic of the Reynolds stress components. This study presents consisted in to simulate through computational fluid dynamics (CFD) package the operation of the Lapple cyclone. Yields of velocity obtained starting from a model anisotropic of the Reynolds stress are compared with experimental data of the literature, as form of validating the results obtained through the use of the Computational fluid dynamics (Fluent). The experimental data of the axial and swirl velocities validate numeric results obtained by the model.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Prasanna Hariharan ◽  
Matthew Giarra ◽  
Varun Reddy ◽  
Steven W. Day ◽  
Keefe B. Manning ◽  
...  

This study is part of a FDA-sponsored project to evaluate the use and limitations of computational fluid dynamics (CFD) in assessing blood flow parameters related to medical device safety. In an interlaboratory study, fluid velocities and pressures were measured in a nozzle model to provide experimental validation for a companion round-robin CFD study. The simple benchmark nozzle model, which mimicked the flow fields in several medical devices, consisted of a gradual flow constriction, a narrow throat region, and a sudden expansion region where a fluid jet exited the center of the nozzle with recirculation zones near the model walls. Measurements of mean velocity and turbulent flow quantities were made in the benchmark device at three independent laboratories using particle image velocimetry (PIV). Flow measurements were performed over a range of nozzle throat Reynolds numbers (Rethroat) from 500 to 6500, covering the laminar, transitional, and turbulent flow regimes. A standard operating procedure was developed for performing experiments under controlled temperature and flow conditions and for minimizing systematic errors during PIV image acquisition and processing. For laminar (Rethroat=500) and turbulent flow conditions (Rethroat≥3500), the velocities measured by the three laboratories were similar with an interlaboratory uncertainty of ∼10% at most of the locations. However, for the transitional flow case (Rethroat=2000), the uncertainty in the size and the velocity of the jet at the nozzle exit increased to ∼60% and was very sensitive to the flow conditions. An error analysis showed that by minimizing the variability in the experimental parameters such as flow rate and fluid viscosity to less than 5% and by matching the inlet turbulence level between the laboratories, the uncertainties in the velocities of the transitional flow case could be reduced to ∼15%. The experimental procedure and flow results from this interlaboratory study (available at http://fdacfd.nci.nih.gov) will be useful in validating CFD simulations of the benchmark nozzle model and in performing PIV studies on other medical device models.


2021 ◽  
Author(s):  
Sinthuran Jegatheeswaran

In this study, both electrical resistance tomography (ERT) and computational fluid dynamics (CFD) were employed to study the performance of the SMX static mixer in the mixing of a secondary fluid in a yield-pseudo plastic primary fluid. Using ERT, the effects of the primary fluid rheology, the primary fluid flow rate, and the secondary fluid type (Newtonian and non-Newtonian) were investigated. A CFD model was then developed for the fluid mixing in the SMX static mixer and was validated using the experimental pressure drop and the ERT mixing index measurements. Using the validated CFD flow model, the effects of the primary/secondary flow ratio and the secondary fluid viscosity on the mixing performance of the SMX static mixer were analyzed. The results from this study revealed that the SMX static mixer was effective for the mixing of highly viscous fluids especially at a lower primary/secondary flow ratio.


Author(s):  
Szu Yung Chen ◽  
Lu Zhang ◽  
Yumiko Sekino ◽  
Hiroyoshi Watanabe

Abstract The following study describes the optimization design procedure of a double-suction pump. BASELINE pump is designed as inlet nozzle diameter 800 mm and impeller outlet diameter 740 mm. Each component of a BASELINE pump, impeller configurations, discharge volute, and the suction casing were determined by DOE (Design of Experiments) and sensitivity analysis. However, finite selected design parameters for each component are mostly restricted to the free surface design of the pump casing. In this study, the optimization method approach along with steady Computational Fluid Dynamics (CFD) is introduced to achieve the high efficiency request of a double-suction pump. To investigate the matching optimization of the impeller and discharge volute at design point, the full parametric geometry of discharge volute was developed referred to the BASELINE shape and Multi-Objective Genetic Algorithm NSGA-II (Non-dominated Sorting Genetic Algorithm II) was used. Optimization result shows that by increasing the volute cross-sectional area from the volute tongue till the circumferential angle 180 deg. provides lower loss. This is due to the improvement achieved for the better distribution of the velocity gradient within the volute. A validated unsteady computational fluid dynamics (CFD) was also employed to investigate the performance difference between optimized volute design and the BASELINE which correlated to the pressure fluctuation and secondary flow behavior inside the cross-sections from 80% to 120% of nominal flow rate. The result shows that the flow distortion in the streamwise direction is stronger with the BASELINE and sensitively affects the operation stability. This is due to the different secondary flow pattern in the cross-sections, hence demonstrating a design direction of desired volute cross-sectional shape for high-performance can be used in a double-suction volute pump.


2021 ◽  
Author(s):  
Sinthuran Jegatheeswaran

In this study, both electrical resistance tomography (ERT) and computational fluid dynamics (CFD) were employed to study the performance of the SMX static mixer in the mixing of a secondary fluid in a yield-pseudo plastic primary fluid. Using ERT, the effects of the primary fluid rheology, the primary fluid flow rate, and the secondary fluid type (Newtonian and non-Newtonian) were investigated. A CFD model was then developed for the fluid mixing in the SMX static mixer and was validated using the experimental pressure drop and the ERT mixing index measurements. Using the validated CFD flow model, the effects of the primary/secondary flow ratio and the secondary fluid viscosity on the mixing performance of the SMX static mixer were analyzed. The results from this study revealed that the SMX static mixer was effective for the mixing of highly viscous fluids especially at a lower primary/secondary flow ratio.


2012 ◽  
Vol 610-613 ◽  
pp. 2552-2555
Author(s):  
Kishokanna Paramasivam ◽  
Jazair Yahya Wira ◽  
Srithar Rajoo

This study presents the investigation of aerodynamics and aeroacoustics of centrifugal fan using commercial computational fluid dynamics (CFD) code. The unsteady turbulent flow of the fan is simulated with Detached Eddy Simulation (DES) and the acoustics sources are computed based on the pressure fluctuations. The Ffowcs Williams and Hawking model is used to predict the tonal noises in aeroacoustics simulation.


Sign in / Sign up

Export Citation Format

Share Document