A new model for damping controlled fluidelastic instability in heat exchanger tube arrays

Author(s):  
C Meskell
Author(s):  
John Mahon ◽  
Paul Cheeran ◽  
Craig Meskell

An experimental study of the surface spanwise pressure on a cylinder in the third row of two normal triangular tube arrays (P/d = 1.32 and 1.58) with air cross flow has been conducted. A range of flow velocities were examined. The correlation of surface pressure fluctuations due to various vibration excitation mechanisms along the span of heat exchanger tubes has been assessed. The turbulent buffeting is found to be uncorrelated along the span which is consistent with generally accepted assumptions in previous studies. Vortex shedding and acoustic resonances were well correlated along the span of the cylinder, with correlations lengths approaching the entire length of the cylinder. Jet switching was observed in the pitch ratio of 1.58 and was found to be correlated along the cylinder, although the spatial behaviour is complex. This result suggests that the excitation force used in fretting wear models may need to be updated to include jet switching in the calculation.


1991 ◽  
Vol 113 (1) ◽  
pp. 30-36
Author(s):  
M. M. Zdravkovich

This is neither an original paper nor a review, but a comparative overview of two seemingly unrelated engineering fields. There are some similarities and strong dissimilarities between multipipe risers and tube arrays employed in heat exchangers. For example, square arrays are used in both, whereas “satellite” clusters cannot be found in heat exchangers. The extensive research on flow-induced vibrations in heat exchanger arrays reveals several mechanisms of excitation and sustenance of tube vibration. Some of the mechanisms identified for tube arrays may be relevant for marine risers. The main object of this comparative overview is to compile and discuss heat exchanger data which may be applicable to marine risers. Design guidelines are specified for satellite clusters.


1991 ◽  
Vol 113 (2) ◽  
pp. 242-256 ◽  
Author(s):  
M. J. Pettigrew ◽  
C. E. Taylor

Fluidelastic instability is the most important vibration excitation mechanism for heat exchanger tube bundles subjected to cross-flow. Most of the available data on this topic have been reviewed from the perspective of the designer. Uniform definitions of critical flow velocity for instability, damping, natural frequency and hydrodynamic mass were used. Nearly 300 data points were assembled. We found that only data from experiments where all tubes are free to vibrate are valid from a design point of view. In liquids, fluid damping is important and should be considered in the formulation of fluidelastic instability. From a practical design point of view, we conclude that fluidelastic instability may be expressed simply in terms of dimensionless flow velocity and dimensionless mass-damping. There is no advantage in considering more sophisticated models at this time. Practical design guidelines are discussed.


1988 ◽  
Vol 110 (2) ◽  
pp. 194-198 ◽  
Author(s):  
L. F. Waring ◽  
D. S. Weaver

An experimental study is reported of the effects of partial admission on the fluid elastic stability of a heat exchanger tube array. The array geometry was a parallel triangular configuration with a pitch ratio of 1.47. Tests were conducted in a wind tunnel with uniform flow over from 33 to 100 percent of single span tubes. In these experiments, the flow location was also varied from center-span to the end supports. Additionally, tests were conducted with uniform flow over one span of two and three-span tube arrays. These results are compared with theoretical predictions.


1992 ◽  
Vol 114 (1) ◽  
pp. 23-32 ◽  
Author(s):  
J. Antunes ◽  
F. Axisa ◽  
M. A. Vento

Due to tube-support gaps in heat-exchangers, low-frequency modes may develop and become unstable at comparatively low flow velocities. This kind of linear fluidelastic instability results in a negative modal damping value, which is a function of the flow velocity. The response amplitude of the unstable tubes increases steadily until tube-support impact becomes unavoidable. These extremely nonlinear vibratory motions have a high-risk potential, as tube velocities and impact forces can be of very considerable magnitude. This paper reports results on a series of laboratory experiments, intended to validate nonlinear calculations on vibro-impact dynamics of heat exchanger tube bundles under fluidelastic instability. The test model was designed for unidirectional motion and the results obtained should be fairly representative of the actual behavior of the U-bend portion of the heat exchanger tube bundles. The system instability is generated by a velocity feedback loop. This method presents significant advantages due to simplicity of the setup and the controllability of the system parameters, in particular concerning the negative damping ratio of the unstable model. A comparison of experimental and computed system dynamics is presented for several values of the instability growth rate and for various initial conditions of the motion. Influence of other parameters, such as tube-support gap magnitude and gap symmetry, is asserted for realistically ranged values. Results show that several steady motion regimes may arises, depending on the system parameters and initial conditions of the motion, which is a fact of engineering significance. Furthermore, a satisfactory qualitative and quantitative agreement was obtained between theoretical predictions and test data.


1978 ◽  
Vol 100 (2) ◽  
pp. 347-353 ◽  
Author(s):  
H. J. Connors

A basic fluidelastic excitation mechanism, of a type reported in an earlier paper, causes large whirling vibrations of tubes in model arrays when the flow velocity exceeds a critical value. The critical velocity is U = βfnDmoδn/ρoD2 where β, the threshold instability constant is a function of the tube pattern and spacing. Threshold instability constants are given that were obtained from wind tunnel and water tunnel tests on multirow tube arrays in uniform cross flow. Test results are discussed that demonstrate the effects of spanwise variations in flow velocity on fluidelastic whirling for both straight tubes and U-tubes. Design methods are provided for predicting the onset of fluidelastic whirling of heat exchanger tubes on multiple supports when spanwise variations in the cross flow exist.


Sign in / Sign up

Export Citation Format

Share Document