Thermal Bending of Thick Rectangular Plates of Bimodulus Composite Materials

1980 ◽  
Vol 22 (6) ◽  
pp. 297-304 ◽  
Author(s):  
J. N. Reddy ◽  
C. W. Ber ◽  
Y. S. Hsu ◽  
V. S. Reddy

Closed-form and finite-element solutions are presented for thermal bending and stretching of laminated composite plates. The material of each layer is assumed to be elastically and thermoelastically orthotropic and bimodular, i.e., having different properties depending upon whether the fibre-direction normal strain is tensile or compressive. The formulations are based on the thermoelastic version of the Whitney-Pagano laminated plate theory, which includes thickness shear deformations. Numerical results are obtained for deflections and neutral-surface positions associated with normal strains in both of the in-plane coordinates. The closed-form and finite-element results are found to be in good agreement.

Author(s):  
Subhasankar Dwibedi

Abstract Analysis of symmetric angle-ply skew laminated composite plates has been presented in the study using a newly developed hybrid Trefftz finite element (hTFE). Mindlin’s plate theory has been used to develop the present hTFE. The forms of displacement are assumed such that governing partial differential equations are satisfied a priori inside the element domain. Particular solutions of the governing equations have been ignored and Trefftz functions are derived using the homogenous solutions only. Inter-element continuity has been established by employing another displacement field along the edges of the hTFEs. The transverse shear stresses have been ignored at the top and bottom surfaces of the laminate. The angle of inclination of the width of the plate with the y-axis has been taken as the skew angle and different forms of skew plates are obtained by varying the skew angle. Sinusoidally distributed load (SDL), uniformly distributed load (UDL), and point load (PL) have been subjected to the top surface of the laminate and the non-dimensionalized center point deflection have been evaluated to assess the performance of the present hTFE. The observation from the present study further reinforce the versatility of the hTFE method for analysis of composite structures with complex shapes or geometries.


2002 ◽  
Vol 24 (1) ◽  
pp. 35-45
Author(s):  
Ngo Nhu Khoa ◽  
Ngo Ich Thinh

A high-order displacement field in quadrilateral element with nine nodes and twelve-degrees-of-freedom per node is developed for bending analysis of thick arbitrary layered composite plates under transverse loads. Results for plate deformations, internal stress-resultants and stresses for selected examples are shown to compare well with the closed-form and other finite element solutions.


2020 ◽  
Vol 26 (3) ◽  
pp. 1-17
Author(s):  
Mohammed Basheer Alabas ◽  
Wedad Ibrahim Majid

In this study, the modified Rayleigh-Ritz method and Fourier series are used to determine the thermal buckling behavior of laminated composite thin plates with a general elastic boundary condition applied to in-plane uniform temperature distribution depending upon classical laminated plate theory(CLPT). A generalized procedure solution is developed for the Rayleigh-Ritz method combined with the synthetic spring technique. The transverse displacement of the orthotropic rectangular plates is not a different term as a new shape expansion of trigonometric series. In this solution approach, the plate transverse deflection and rotation due to bending are developed into principle Fourier series with a sufficient smoothness auxiliary polynomial function, the variable of boundary condition can be easily done by only change the boundary spring stiffness of at the all boundaries of laminated composite plate without achieving any replacement to the solution. The accuracy of the current outcome is verified by comparing with the result obtained from other analytical methods in addition to the finite element method (FEM), so the excellent of this technique is proving during numerical examples.


2017 ◽  
Vol 267 ◽  
pp. 35-39 ◽  
Author(s):  
Emrah Madenci ◽  
Atilla Özütok

The main objective of the present study is to give a systematic way for the derivation of laminated composite plates by using the mixed type finite element formulation with a functional. The first order shear deformation plate theory is used. Differential field equations of composite plates are derived from virtual displacement principle. These equations were written in operator form then by using the Gâteaux differential method, a new functional which including the dynamic and geometric boundary conditions is obtained after provide potential conditions. Applying mixed-type finite element based on this new functional, a plate element namely FOPLT32 is derived which have 8 degrees of freedoms on per node, total 32 freedoms. The reliability of the derived FOPLT32 plate elements for static analysis is verified, since the results obtained have been shown to agree well with the existing ones.


2007 ◽  
Vol 29 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Ngo Nhu Khoa ◽  
Tran Ich Thinh

A rectangular non-conforming element based on Reddy's higher-order shear deformation plate theory is developed. Although the plate theory is quite attractive but it could not be exploited as expected in finite-element analysis. This is due to the difficulties associated with satisfaction of inter-elemental continuity requirement and satisfy zero shear stress boundary conditions of the plate theory. In this paper, the proposed element is developed where Reddy's plate theory is successfully implemented. It has four nodes and each node contains 7 degrees of freedom. The performance of the element is tested with different numerical examples, which show its precision and range of applicability.


2008 ◽  
Vol 30 (2) ◽  
pp. 112-121 ◽  
Author(s):  
Tran Ich Thinh ◽  
Tran Huu Quoc

In this paper, authors use a finite element model based on higher-order displacement plate theory for analysis of stiffened laminated composite plates. Transverse shear deformation is included in the formulation making the model applicable for both moderately thick and thin composite plates. The plate element used is a nine-noded isoparametric one with nine degrees of freedom at each node. The stiffness of stiffener is reflected at all nine nodes of plate element in which it is placed. Accordingly, the stiffeners can be positioned anywhere within the place element. Free vibration and deflection of stiffened laminated composite plates are carried out, and results are compared with existing analytical and other solutions.


1993 ◽  
Vol 115 (1) ◽  
pp. 41-46 ◽  
Author(s):  
T. Y. Kam ◽  
R. R. Chang

A shear deformable finite element is developed for the analysis of thick laminated composite plates. The finite element formulation is based on Mindlin’s plate theory in which shear correction factors are derived from the exact expressions for orthotropic materials. The element is used to solve a variety of problems on deflection, stress distribution, natural frequency and buckling of laminated composite plates. The effects of material properties, plate aspect ratio, length-to-thickness ratio, number of layers and lamination angle on the mechanical behaviors of laminated composite plates are investigated. Optimal lamination arrangements of layers for laminated composite plates of particular applications are determined.


2016 ◽  
Vol 16 (03) ◽  
pp. 1450112 ◽  
Author(s):  
Mehdi Bohlooly ◽  
Babak Mirzavand

A thermal buckling analysis is presented for simply-supported rectangular symmetric cross-ply laminated composite plates that are integrated with surface-mounted piezoelectric actuators and subjected to the combined action of thermal load and constant applied actuator voltage. The material properties of the composite and piezoelectric layers are assumed to be functions of temperature. Derivations of the equations are based on the classical laminated plate theory, using the von-Karman nonlinear kinematic relations. The Ritz method is adopted to obtain closed-form solutions for the critical buckling temperature. Numerical examples are presented to verify the proposed method. The effects of the applied actuator voltage, plate geometry and stacking sequence of laminates are investigated.


Sign in / Sign up

Export Citation Format

Share Document