Paper 14: The Influence of Clearance and Journal Surface Finish on the Load Capacity of Water-Lubricated Plain Bearings

Author(s):  
D. W. Garside ◽  
S. Hother-Lushington

Experiments are described into the effect of surface finish and clearance upon the value of ZN/P at which a water-lubricated plain journal bearing begins to operate hydrodynamically. It is shown that clearance ratio has only a small effect and that the measured values of the critical ZN/P are between values calculated from the narrow bearing theory of Dubois and Ocvirk and those calculated from the infinitely long bearing solution of Cameron and Wood.

1968 ◽  
Vol 90 (1) ◽  
pp. 271-280 ◽  
Author(s):  
B. J. Hamrock

A linearized PH solution to the Reynolds equation was obtained while neglecting side leakage. The analysis was divided into two parts—the step and ridge regions. The pressure profile across the step and ridge region of the various pads which are placed around the journal was obtained from the linearized PH Reynolds equation. Knowing the pressure, the load components and attitude angle were calculated. The resulting equations were found to be a function of the bearing parameters (the eccentricity and compressibility number) and the step parameters (ratio of the stepped clearance to the ridge clearance, ratio of the angle extended by the ridge to the angle extended by the pad, and number of pads placed around the journal). The maximum load capacity can be determined by numerically differentiating the load with respect to the step bearing parameters while finding where the slope is zero. A series of data was run while varying the bearing parameters. The attitude angle was calculated for the various cases which were run.


1980 ◽  
Vol 22 (2) ◽  
pp. 79-94 ◽  
Author(s):  
R. E. Hinton ◽  
J. B. Roberts

Experimental results are presented, relating to the friction factor, load capacity and attitude angle, for a plain, cylindrical journal bearing with a central, circumferential inlet groove. The length to diameter ratio of the journal bearing was 1/3 and the clearance ratio was 0.011. By the use of various lubricants, including water, Reynolds numbers ranging from 40 to 50 000 were attained. Comparisons with various theoretical predictions are given. It is shown that a simple, empirical theory, which incorporates measured friction factors, gives better agreement with the experimental load capacity results than previous theories.


1941 ◽  
Vol 8 (2) ◽  
pp. A49-A58
Author(s):  
J. T. Burwell ◽  
J. Kaye ◽  
D. W. van Nymegen ◽  
D. A. Morgan

Abstract Various commercial surface finishes are produced on steel shafts and in Part 1 it is found that the finish has little effect on the operation of a journal bearing in the region of hydrodynamic lubrication but does markedly affect the load capacity. In Part 2 a chemical method of detecting iron in oil is developed with a sensitivity of one part in ten million. This method is used to measure the iron removed during “running-in” from shafts with different surface finishes and under different loads.


1959 ◽  
Vol 81 (2) ◽  
pp. 245-252 ◽  
Author(s):  
F. W. Ocvirk ◽  
G. B. DuBois

A method of relating surface finish to minimum oil-film thickness and the corresponding load capacity of plain journal bearings is presented with supporting experimental data. The effect of clearance on load capacity and friction are shown on graphs indicating an optimum bearing clearance.


2021 ◽  
Author(s):  
Karan Singh Jamwal ◽  
Anant Kumar Singh ◽  
Kunal Arora ◽  
Sunil Kumar Paswan

Abstract Aerostatic bearing is an ultra-precision component that uses a spindle surrounded by a thin film of air. Due to the high accuracy of aerostatic bearing, the demand for these components is very high in electronic, instrumentation, healthcare, and other manufacturing or processing industries. In the present work, the main focused area is on the experimental determination of the effect of roughness parameter on the performance of the aerostatic journal and thrust bearings. To achieve the aim, the aerostatic bearing is designed based on theoretical analysis. The present design is numerically investigated by simulation of airflow in ANSYS Fluent with computational fluid dynamics module. The results from the simulation are validated by the results generated for pressure distribution in previous researches. After performing the finishing on the bearing and spindle surface, the manufactured components are assembled for analysing the variation in radial and axial loads acting on the spindle with the spindle displacement (1-5 μm) in the direction of the load at supply pressures (3-6 bar) in the clearance of 30 μm. For surface improvement of the air bearing, three different techniques are used namely machining, grinding, and magnetorheological finishing. For each roughness reduction technique, the variation in axial and radial loads acting on the spindle is determined with variation in spindle displacement. The experimental results showed the increase in load capacity due to improvement in the surface finish for journal bearing and thrust bearing at 5 µm displacement in the spindle is found to be 0.68 N for machining to grinding and 2.0 N from grinding to magnetorheological finishing respectively. The results determined for the surface finish parameter reveals the effect of surface roughness on the load-carrying capacity of the aerostatic journal and thrust bearing. The current study on the surface finishing of aerostatic bearing is found effective for the applications such as drives in production machines where good grade of surface finish are the major parameters for improving the overall functional efficiency.


Sign in / Sign up

Export Citation Format

Share Document