The Design and Operation of the Parsons Experimental Gas Turbine

1949 ◽  
Vol 160 (1) ◽  
pp. 454-471 ◽  
Author(s):  
A. T. Bowden ◽  
J. L. Jefferson

The paper describes the principal design features of the Parsons 500 h.p. experimental industrial gas turbine, and records the operating results obtained in running the plant since December 1945. A section is devoted to some of the preliminary investigations on the compressor, combustion, and heat exchanger components, undertaken prior to the building of the unit. Some of the early work on the axial-flow compressor is, it is considered, of particular interest. One of the most important questions remaining to be answered in gas-turbine operation, is the quality of the oil fuel which can be regularly and reliably burned. Details are included in the paper of operating results using a residual oil fuel. Considerable trouble was experienced as a result of the building up of deposits in the turbine blading; these deposits are analysed and compared with the parent oil-fuel analysis, and photographs of spindle and cylinder blading show the nature of the build-up.

Author(s):  
F. Carchedi ◽  
G. R. Wood

This paper describes the design and development of a 15-stage axial flow compressor for a −6MW industrial gas turbine. Detailed aspects of the aerodynamic design are presented together with rig test data for the complete characteristic including stage data. Predictions of spanwise flow distributions are compared with measured values for the front stages of the compressor. Variable stagger stator blading is used to control the position of the low speed surge line and the effects of the stagger changes are discussed.


1982 ◽  
Vol 104 (4) ◽  
pp. 823-831 ◽  
Author(s):  
F. Carchedi ◽  
G. R. Wood

The paper describes the design and development of a 15 stage axial flow compressor for a 6-MW industrial gas turbine. Detailed aspects of the aerodynamic design are presented together with rig test data for the complete characteristic including stage data. Predictions of spanwise flow distributions are compared with measured values for the front stages of the compressor. Variable stagger stator blading is used to control the position of the low-speed surge line and the effects of the stagger changes are discussed.


2010 ◽  
Vol 132 (04) ◽  
pp. 51-51 ◽  
Author(s):  
Lee S. Langston

This article presents an overview of the world’s very first industrial gas turbine, which started operation in the Swiss city of Neuchâtel, in 1939. This 4-MWe machine is now on display in a special museum on the grounds of Alstom in Birr village. The museum is housed in an attractive glassed-in building, adjacent to the rotor plant. The gas turbine had originally been in operation for 63 years in a bombproof building, serving the city of Neuchâtel as a standby and peaking unit for electrical power. It was closed down in 2002 after damage to the generator occurred, and then was moved to Birr by Alstom for restoration. It was put on display in its new museum home in 2006. The Neuchâtel gas turbine looks surprisingly “modern.” The axial flow compressor, axial flow turbine, and electrical generator are inline, and directly coupled, and run at 3000 rpm to produce 4 MWe. It is roughly 3–5 times larger than the 7-MWe Solar Taurus gas turbines in the University of Connecticut cogen plant.


Author(s):  
T. Sugimoto ◽  
K. Ikesawa ◽  
S. Kajita ◽  
W. Karasawa ◽  
T. Kojima ◽  
...  

The M7A-01 gas turbine is a newly developed 6 MW class single-shaft machine. With its high simple-cycle efficiency and high exhaust gas temperature. it is particularly suited for use in electric power generation and co-generation applications. An advanced high efficiency axial-flow compressor, six can-type combustors, and a high inlet temperature turbine has been adopted. This results in a high thermal efficiency of 31.5% at the gas turbine output shaft and a high overall thermal efficiency of co-generation system. In addition, low NOx emissions from the combustors and a long service life permit long-term continuous operation under various environmental limitations. The results of the full load shop test, accelerated cyclic endurance test and extra severity tests verified that the performance, the mechanical characteristics and the emission have satisfied the initial design goals.


1978 ◽  
Author(s):  
B. Becker ◽  
O. von Schwerdtner ◽  
J. Günther

In the course of developing the compressor of a 100-MW gas turbine, extensive measurements took place on a test compressor provided with the four front stages scaled down to 1:4.63. The performance investigations have been supplemented by measurements of flow distribution down- and upstream of the blading, as well as at various intermediate axial positions. The test stand, operating in a closed circuit, allowed for the variation of the Reynolds number by changing the pressure level. The geometry of the inlet casing was variable as well, thus enabling the comparison of results with axial, two- and one-sided inlet flows. In this connection, the vibrational behavior of the rotating blades, besides the aerodynamics of the compressor, have been investigated. In case of the inlet casing with a two-sided inflow, additional flow field analyses have been performed using a model without compressor blading. The theoretical results calculated under the assumption of a rotational-symmetric flow, as well as the measurements at the gas turbine compressor itself, are used for comparison. The gas turbine compressor operating with a mass flow of 483 kg/s at ISO-conditions and a pressure ratio of 10 is running in the highest performance range of single-shaft compressors in operation today.


Author(s):  
I. N. Egorov ◽  
G. V. Kreitinin

A numerical method has been preposed to determine optimum laws to control gas turbine engine (CTE) variable components, including an independent control of blade rows in a multistage axial flow compressor under strong non-stationary flow disturbances at the inlet, optimum laws to control a turbofan under non-stationary thermal effects at the inlet have been obtained using mathematical models with various degree of filling in detail the flow in an engine flow path. There is shown a possibility to considerably increase a range of the CTE stable operation through the use of dynamic control of stator blades in a multistage axial flow compressor, also possibilities of practical use of optimum laws to control engine variable components in the system of preventing an unstable operation are being discussed.


1947 ◽  
Vol 157 (1) ◽  
pp. 471-482 ◽  
Author(s):  
D. M. Smith

The paper reviews the technical development of the F2 jet propulsion engine, an axial flow gas turbine designed and manufactured by the Metropolitan-Vickers Electrical Company, Limited, under contract from the Ministry of Aircraft Production. An account is given of the preliminary work in 1938–9, in collaboration with the Royal Aircraft Establishment, on gas turbines for aircraft propulsion. The development of a simple jet engine of the axial flow type was started in July 1940. The first engine ran on bench test in December 1941. The first flights took place in June 1943 on a flying testbed, and in November 1943 on a jet-propelled aircraft. The evolution of engines of this type, leading up to the current F2/4 jet propulsion engine, is described. Each main component of the engine—the axial flow compressor, the annular combustion chamber and the high temperature turbine—necessitated extensive development work in fields previously unexplored; the methods used in the development of these and other components are explained. The F2 engine was the first British jet propulsion engine of axial flow type, and it is also unique amongst British engines in the straight-through design and annular combustion chamber that gives an exceptionally low frontal area.


Author(s):  
P. C. T. de Boer

Estimates are given of the burning and evaporation times of No. 2 distillate and No. 6 residual oil droplets, under conditions typical of industrial gas turbine combustors. Account is taken of the temperature dependence of the specific heat, the diffusion constant, and the thermal conductivity of the gas mixture surrounding the droplet. Detailed calculations are presented of the factor by which the droplet lifetime is reduced as a result of convection, for the case that the droplet is released in a gas moving at constant velocity. This factor is on the order of four for the conditions of interest. Using estimates of initial droplet diameter based on data reported by Jasuja, it is found that the ratio of characteristic droplet burning time to characteristic droplet residence time in a typical industrial gas turbine combustor is much smaller than 1 for distillate oil, but may be on the order of 1 for residual oil.


Author(s):  
I. N. Egorov ◽  
G. V. Kretinin

Procedure for the stochastic optimization of design parameters of gas turbine engine components for a prescribed level of production technology is discussed. Such combined criteria of the stochastic optimization as effectiveness-probability of realizing a design of an intricate technical object are proposed. With reference to the task of optimum designing the rows of a multistage axial flow compressor, there are presented the results, obtained for various probability criteria, in parallel with conducting their comparative analysis, and there are also investigated optimum stable (robust) characteristics of designs obtained for various levels of technology. There are also demonstrated a possibility of a significant increase in probability to realize in actual practice the design, obtained in stochastic setting, as compared to the design, obtained in deterministic setting.


Sign in / Sign up

Export Citation Format

Share Document