Development of a 6 MW-Class High-Efficiency Gas Turbine M7A-01

Author(s):  
T. Sugimoto ◽  
K. Ikesawa ◽  
S. Kajita ◽  
W. Karasawa ◽  
T. Kojima ◽  
...  

The M7A-01 gas turbine is a newly developed 6 MW class single-shaft machine. With its high simple-cycle efficiency and high exhaust gas temperature. it is particularly suited for use in electric power generation and co-generation applications. An advanced high efficiency axial-flow compressor, six can-type combustors, and a high inlet temperature turbine has been adopted. This results in a high thermal efficiency of 31.5% at the gas turbine output shaft and a high overall thermal efficiency of co-generation system. In addition, low NOx emissions from the combustors and a long service life permit long-term continuous operation under various environmental limitations. The results of the full load shop test, accelerated cyclic endurance test and extra severity tests verified that the performance, the mechanical characteristics and the emission have satisfied the initial design goals.

Author(s):  
Takao Sugimoto ◽  
Katsushi Nagai ◽  
Masanori Ryu ◽  
Ryozo Tanaka ◽  
Takeshi Kimura ◽  
...  

The L20A gas turbine is a newly developed 20 MW class single-shaft machine. With its high simple-cycle efficiency and high exhaust gas temperature, it is particularly suited for use in distributed power generation, cogeneration and combined cycle applications. A design philosophy has been adopted for the turbine which includes a high efficiency transonic axial-flow compressor with eight can-type combustors and a high inlet temperature of 1250°C. This results in a thermal efficiency of 35% and an overall thermal efficiency of 80% for cogeneration system. In addition, the NOx emissions from the combustor is low and the L20A has a long service life. These features permit long-term continuous operation under various environmental limitations. Due to the engine’s high efficiency and its low component totals, the lowest life cycle cost is achieved. Development testing has verified that the performance, the mechanical characteristics and the emission have satisfied the initial design goals. The engine has been in operation from November 2001 as the first operating unit in a co-generation system at Kawasaki Akashi Works.


Author(s):  
Isashi Takehara ◽  
Tetsuo Tatsumi ◽  
Yoshihiro Ichikawa

The Japanese Ceramic Gas Turbine (CGT) research and development program (FY1988–1998) as a part of the New Sunshine Project funded by the Ministry of International Trade and Industry (MITI) was completed in March 1999. Kawasaki Heavy Industries, Ltd. (KM) participated in this research program from the beginning and developed a twin-shaft CGT with a recuperator, designated as the “CGT302”. The purposes of this program were: 1) to achieve both a high efficiency and low pollutant emissions level using ceramic components, 2) to prove a multi-fuel capability to be used in co-generation systems, and 3) to demonstrate long-term operation. The targets of this program were: i) to achieve a thermal efficiency of over 42% at a turbine inlet temperature (TIT) of 1350°C, ii) to keep its emissions within the regulated value by the law, and iii) to demonstrate continuous operation for more than a thousand hours at 1200°C TIT. The CGT302 has successfully attained its targets. In March 1999 the CGT302 recorded 42.1% thermal efficiency, and 31.7 ppm NOx emissions (O2 = 16%) at 1350°C TIT. At this time it had also accumulated over two thousand hours operation at 1200°C. In this paper, we summarize the development of the CGT302.


2002 ◽  
Vol 124 (3) ◽  
pp. 627-635 ◽  
Author(s):  
I. Takehara ◽  
T. Tatsumi ◽  
Y. Ichikawa

The Japanese ceramic gas turbine (CGT) research and development program (FY1988-1998) as a part of the New Sunshine Project funded by the Ministry of International Trade and Industry (MITI) was completed in March 1999. Kawasaki Heavy Industries, Ltd. (KHI) participated in this research program from the beginning and developed a twin-shaft CGT with a recuperator, designated as the “CGT302.” The purposes of this program were (1) to achieve both a high efficiency and low pollutant emissions level using ceramic components, (2) to prove a multifuel capability to be used in cogeneration systems, and (3) to demonstrate long-term operation. The targets of this program were (i) to achieve a thermal efficiency of over 42 percent at a turbine inlet temperature (TIT) of 1350°C, (ii) to keep its emissions within the regulated value by the law, and (iii) to demonstrate continuous operation for more than a thousand hours at 1200°C TIT. The CGT302 has successfully attained its targets. In March 1999 the CGT302 recorded 42.1 percent thermal efficiency, and 31.7 ppm NOx emissions (O2=16 percent) at 1350°C TIT. At this time it had also accumulated over 2000 hours operation at 1200°C. In this paper, we summarize the development of the CGT302.


Author(s):  
Takao Sugimoto ◽  
Katsushi Nagai ◽  
Masanori Ryu ◽  
Ryozo Tanaka ◽  
Takeshi Kimura

Kawasaki Heavy Industries launched the L20A gas turbine, rated at 18MW, in 2001. The design philosophy adopted for the turbine includes a high efficiency transonic axial-flow compressor with eight can-type combustors and a high turbine inlet temperature of 1250 Deg C. This results in a thermal efficiency of 35%, an electric efficiency of 50% for combined cycle power plants and an overall thermal efficiency of 81% for cogeneration systems. In addition, the NOx emissions from the combustor are lower than 23 ppm and the engine has a long service life. These features permit long-term continuous operations under various environmental limitations. Details are presented in 2002-GT-30255.(1) The first commercial unit has been in operation as a daily start and stop cogeneration plant in Kawasaki’s Akashi Works in Japan since October 2001. Accumulated operation hours are 5500 hours and 410 starts as of March 2004. Reliability higher than 99% has been demonstrated during this period. During the shop test and the commercial operation, some additional improvements have been developed for the compressor, turbine and combustor.


Author(s):  
Kazuhiko Tanimura ◽  
Naoki Murakami ◽  
Akinori Matsuoka ◽  
Katsuhiko Ishida ◽  
Hiroshi Kato ◽  
...  

The M7A-03 gas turbine, an 8 MW class, single shaft gas turbine, is the latest model of the Kawasaki M7A series. Because of the high thermal efficiency and the high exhaust gas temperature, it is particularly suitable for distributed power generation, cogeneration and combined-cycle applications. About the development of M7A-03 gas turbine, Kawasaki has taken the experience of the existing M7A-01 and M7A-02 series into consideration, as a baseline. Furthermore, the latest technology of aerodynamics and cooling design, already applied to the 18 MW class Kawasaki L20A, released in 2000, has been applied to the M7A-03. Kawasaki has adopted the design concept for achieving reliability within the shortest possible development period by selecting the same fundamental engine specifications of the existing M7A-02 – mass air flow rate, pressure ratio, TIT, etc. However, the M7A-03 has been attaining a thermal efficiency of greater than 2.5 points higher and an output increment of over 660 kW than the M7A-02, by the improvement in aerodynamic performance of the compressor, turbine and exhaust diffuser, improved turbine cooling, and newer seal technology. In addition, the NOx emission of the combustor is low and the M7A-03 has a long service life. These functions make long-term continuous operation possible under various environmental restraints. Lower life cycle costs are achieved by the engine high performance, and the high-reliability resulting from simple structure. The prototype M7A-03 gas-turbine development test started in the spring of 2006 and it has been confirmed that performance, mechanical characteristics, and emissions have achieved the initial design goals.


Author(s):  
Y. Kashiwabara ◽  
Y. Katoh ◽  
H. Ishii ◽  
T. Hattori ◽  
Y. Matsuura ◽  
...  

In this paper, the development leading to a 17-stage axial flow compressor (pressure ratio 14.7) for the 25 MW class heavy duty gas turbine H-25 is described. In the course of developing the H-25’s compressor, extensive measurements were carried out on models. Experimental results are compared with predicted values. Aerodynamic experiments covered the measurements of unsteady flows such as rotating stall and surge as well as the steady-state performance of the compressor. Based on the results of these tests, the aerodynamic and mechanical design parameters of the full scale H-25 compressor were finalized on the basis of two model compressors. Detailed measurements of the first unit of the H-25 gas turbine were carried out. Test results on the compressor are presented and show the achievement of the expected design targets.


Author(s):  
H. E. Weber

For decades large amounts of money and effort have been spent on conventional turbomachinery development. Initially improvements in performance were rapid. However, in the last two decades better performance of these machines has slowed considerably. Compressor efficiencies have been near their present limits of 88% to 92% for many years. High pressure ratios required of high performance engines are not efficiently produced in the conventional turbomachines. High pressure ratios for high cycle efficiency require many stages of conventional compression. Compressors, especially in small turbomachines, decrease in efficiency as the number of stages increase due to the large amounts of surface area and relatively large leakage passages in the higher pressure stages. The requirement for many stages of conventional compression also results in heavy machines. If high compressor pressure cannot be attained the turbine exhaust gas temperature may be considerably above the compressor discharge temperature; a regenerator or recuperator is then required for acceptable cycle efficiency. This results in considerable complication and high engine weight. Maximum turbine inlet temperatures in conventional machines have also been near their limit for many years. High temperatures and high pressures required for light weight, high efficiency machines are inconsistent with the requirements for high strength materials. To increase permissable turbine inlet temperatures compressor discharge air is used for blade cooling. Use of this air soon reaches its limit because the high pressure cooling air is then not available for power production. Engine power and cycle efficiency begins to decrease and a limit on turbine inlet temperature results. Consequently, new concepts in power and thrust production are required. One class of machines which may alleviate many of the above described problems are the wave rotors or engines (1 thru 15). These operate with time dependent flow in the moving rotor blade passages and steady flow in the stator parts.


Author(s):  
David Harper ◽  
Devin Martin ◽  
Harold Miller ◽  
Robert Grimley ◽  
Fre´de´ric Greiner

The MS6001C gas turbine combines the proven reliability of the General Electric gas turbine family with the advanced technology developed for the FA, FB and H machine designs. The engine configuration is a single shaft bolted rotor, driving a 50 or 60 Hz. generator though a cold end mounted load gear. Rated at 42.3 MW, with a thermal efficiency of 36.3%, the MS6001C will provide greater than a four percent increase in efficiency over the MS6001B. This paper is focused on the design and development of the MS6001C gas turbine, highlighting the commonality between this and other General Electric Power Systems (GEPS) and General Electric Aircraft Engines (GEAE) designs, as well as introducing some new and innovative features. The new high efficiency, 12 stage, axial flow compressor, features a 19:1 pressure ratio with three stages of variable guide vanes. The can annular, six chamber, Dry Low NOx (DLN-2.5H) combustion system is scaled from field proven, low emission technology. The turbine incorporates three stages, two cooled blade rows, and operates at a 1327°C firing temperature. After a thorough factory full speed no load test has been conducted, the first MS6001C engine will be shipped to a customer site in Kemalpasalzmir Turkey, where an instrumented full load test will be conducted to validate the design.


1980 ◽  
Author(s):  
Rolf Hendriks ◽  
Philip Levine

A new gas turbine system is under development by Thomassen Holland b. v. and Fern Engineering. The machine features a two-stage inter-cooled centrifugal compressor, a regenerator and an annular combustor. Prototype units will be operating in 1982. Cycle optimization results are presented which lead to the selection of a rotor inlet temperature of 2042 F, an overall compression ratio of 9.5 and a thermal efficiency of 44 percent.


1982 ◽  
Vol 104 (3) ◽  
pp. 707-714
Author(s):  
J. P. Van Buijtenen ◽  
W. M. Farrell

This paper describes the mechanical design features on TF-10 gas turbine. The TF-10 gas turbine features an intercooled centrifugal compressor and an annular combustor. A regenerator is added as a standard item. The ISO rating is 7.5 MW (10,000 hp) with a rotor inlet temperature (RIT) of 1116°C (2042°F) and a thermal efficiency of approximately 44 percent. Description of the combustion, rotors, stators, bearings, and shafting is presented.


Sign in / Sign up

Export Citation Format

Share Document