Spatial Variation of Heat Transfer to Pistons and Liners of Some Medium Speed Diesel Engines

1970 ◽  
Vol 185 (1) ◽  
pp. 203-218 ◽  
Author(s):  
W. J. Seale ◽  
D. H. C. Taylor

Heat transfer coefficients have been measured on the gas side of pistons and liners, the water side of liners, and the oil side of pistons. A significant radial variation in heat transfer across the piston crown has been found. The position of the maximum heat transfer coefficient appears to be coincident with the maximum air concentration, or the position the tips of the fuel sprays have reached at the time of ignition, and the radial variation of heat transfer is possibly related to the amount of fuel burnt at each radius. For four-stroke engines, equations are presented to describe this variation. Heat transfer coefficients at the exposed section of the liner have been found to be similar to the values at the outer edge of the piston. Heat transfer between piston undercrown and cooling oil has been measured for various types of cooling arrangement and, for jet cooling, an expression has been suggested for the heat transfer coefficient. Equations have also been derived to enable coefficients to be predicted for heat transfer from liner to cooling water.

Author(s):  
Ann-Christin Fleer ◽  
Markus Richter ◽  
Roland Span

AbstractInvestigations of flow boiling in highly viscous fluids show that heat transfer mechanisms in such fluids are different from those in fluids of low viscosity like refrigerants or water. To gain a better understanding, a modified standard apparatus was developed; it was specifically designed for fluids of high viscosity up to 1000 Pa∙s and enables heat transfer measurements with a single horizontal test tube over a wide range of heat fluxes. Here, we present measurements of the heat transfer coefficient at pool boiling conditions in highly viscous binary mixtures of three different polydimethylsiloxanes (PDMS) and n-pentane, which is the volatile component in the mixture. Systematic measurements were carried out to investigate pool boiling in mixtures with a focus on the temperature, the viscosity of the non-volatile component and the fraction of the volatile component on the heat transfer coefficient. Furthermore, copper test tubes with polished and sanded surfaces were used to evaluate the influence of the surface structure on the heat transfer coefficient. The results show that viscosity and composition of the mixture have the strongest effect on the heat transfer coefficient in highly viscous mixtures, whereby the viscosity of the mixture depends on the base viscosity of the used PDMS, on the concentration of n-pentane in the mixture, and on the temperature. For nucleate boiling, the influence of the surface structure of the test tube is less pronounced than observed in boiling experiments with pure fluids of low viscosity, but the relative enhancement of the heat transfer coefficient is still significant. In particular for mixtures with high concentrations of the volatile component and at high pool temperature, heat transfer coefficients increase with heat flux until they reach a maximum. At further increased heat fluxes the heat transfer coefficients decrease again. Observed temperature differences between heating surface and pool are much larger than for boiling fluids with low viscosity. Temperature differences up to 137 K (for a mixture containing 5% n-pentane by mass at a heat flux of 13.6 kW/m2) were measured.


Author(s):  
Jatuporn Kaew-On ◽  
Somchai Wongwises

The evaporation heat transfer coefficients and pressure drops of R-410A and R-134a flowing through a horizontal-aluminium rectangular multiport mini-channel having a hydraulic diameter of 3.48 mm are experimentally investigated. The test runs are done at refrigerant mass fluxes ranging between 200 and 400 kg/m2s. The heat fluxes are between 5 and 14.25 kW/m2, and refrigerant saturation temperatures are between 10 and 30 °C. The effects of the refrigerant vapour quality, mass flux, saturation temperature and imposed heat flux on the measured heat transfer coefficient and pressure drop are investigated. The experimental data show that in the same conditions, the heat transfer coefficients of R-410A are about 20–50% higher than those of R-134a, whereas the pressure drops of R-410A are around 50–100% lower than those of R-134a. The new correlations for the evaporation heat transfer coefficient and pressure drop of R-410A and R-134a in a multiport mini-channel are proposed for practical applications.


1993 ◽  
Vol 115 (4) ◽  
pp. 231-236 ◽  
Author(s):  
V. B. Sharma ◽  
S. C. Mullick

An approximate method for calculation of the hourly output of a solar still over a 24-hour cycle has been studied. The hourly performance of a solar still is predicted given the values of the insolation, ambient temperature, wind heat-transfer coefficient, water depth, and the heat-transfer coefficient through base and sides. The proposed method does not require graphical constructions and does not assume constant heat-transfer coefficients as in the previous methods. The possibility of using the values of the heat-transfer coefficients for the preceding time interval in the heat balance equations is examined. In fact, two variants of the basic method of calculation are examined. The hourly rate of evaporation is obtained. The results are compared to those obtained by numerical solution of the complete set of heat balance equations. The errors from the approximate method in prediction of the 24-hour output are within ±1.5 percent of the values from the numerical solution using the heat balance equations. The range of variables covered is 5 to 15 cms in water depth, 0 to 3 W/m2K in a heat-transfer coefficient through base and sides, and 5 to 40 W/m2K in a wind heat-transfer coefficient.


Author(s):  
Nirm V. Nirmalan ◽  
Ronald S. Bunker ◽  
Carl R. Hedlung

A new method has been developed and demonstrated for the non-destructive, quantitative assessment of internal heat transfer coefficient distributions of cooled metallic turbine airfoils. The technique employs the acquisition of full-surface external surface temperature data in response to a thermal transient induced by internal heating/cooling, in conjunction with knowledge of the part wall thickness and geometry, material properties, and internal fluid temperatures. An imaging Infrared camera system is used to record the complete time history of the external surface temperature response during a transient initiated by the introduction of a convecting fluid through the cooling circuit of the part. The transient data obtained is combined with the cooling fluid network model to provide the boundary conditions for a finite element model representing the complete part geometry. A simple 1D lumped thermal capacitance model for each local wall position is used to provide a first estimate of the internal surface heat transfer coefficient distribution. A 3D inverse transient conduction model of the part is then executed with updated internal heat transfer coefficients until convergence is reached with the experimentally measured external wall temperatures as a function of time. This new technique makes possible the accurate quantification of full-surface internal heat transfer coefficient distributions for prototype and production metallic airfoils in a totally non-destructive and non-intrusive manner. The technique is equally applicable to other material types and other cooled/heated components.


2017 ◽  
Vol 15 (3) ◽  
pp. 467
Author(s):  
Ravinder Kumar Sahdev ◽  
Mahesh Kumar ◽  
Ashwani Kumar Dhingra

In this paper, convective and evaporative heat transfer coefficients of the Indian groundnut were computed under indoor forced convection drying (IFCD) mode. The groundnuts were dried as a single thin layer with the help of a laboratory dryer till the optimum safe moisture storage level of 8 – 10%. The experimental data were used to determine the values of experimental constants C and n in the Nusselt number expression by a simple linear regression analysis and consequently, the convective heat transfer coefficient (CHTC) was determined. The values of CHTC were used to calculate the evaporative heat transfer coefficient (EHTC). The average values of CHTC and EHTC were found to be 2.48 W/m2 oC and 35.08 W/m2 oC, respectively. The experimental error in terms of percent uncertainty was also estimated. The experimental error in terms of percent uncertainty was found to be 42.55%. The error bars for convective and evaporative heat transfer coefficients are also shown for the groundnut drying under IFCD condition.


2000 ◽  
Author(s):  
M. Kumagai ◽  
R. S. Amano ◽  
M. K. Jensen

Abstract A numerical and experimental investigation on cooling of a solid surface was performed by studying the behavior of an impinging jet onto a fixed flat target. The local heat transfer coefficient distributions on a plate with a constant heat flux were computationally investigated with a normally impinging axisymmetric jet for nozzle diameter of 4.6mm at H/d = 4 and 10, with the Reynolds numbers of 10,000 and 40,000. The two-dimensional cylindrical Navier-Stokes equations were solved using a two-equation k-ε turbulence model. The finite-volume differencing scheme was used to solve the thermal and flow fields. The predicted heat transfer coefficients were compared with experimental measurements. A universal function based on the wave equation was developed and applied to the heat transfer model to improve calculated local heat transfer coefficients for short nozzle-to-plate distance (H/d = 4). The differences between H/d = 4 and 10 due to the correlation among heat transfer coefficient, kinetic energy and pressure were investigated for the impingement region. Predictions by the present model show good agreement with the experimental data.


2000 ◽  
Author(s):  
Edward V. McAssey ◽  
Jinfeng Wu ◽  
Thomas Dougherty ◽  
Bao Wen Yang

Abstract Data are presented for sub-cooled boiling of water in the range of two to four atmospheres. The results show that the sharp increase in heat transfer coefficient associated with nucleate boiling occurs at wall superheats of 20 °C to 30 °C. Comparisons between experimental and predicted heat transfer coefficients are also presented. The two prediction methods examined are the Chen correlation and the Kandlikar correlation.


2017 ◽  
Vol 29 (1) ◽  
pp. 44-48
Author(s):  
KM Tanvir Ahmmed ◽  
Sultana Razia Syeda

In this study saturated nucleate pool boiling of water with sodium oleate surfactant on a horizontal cylindrical heater surface has been investigated experimentally and compared with that of demineralized water. The concentration of sodium oleate in water was 100-300 ppm. The experimental results show that a small amount of surfactant enhances the heat transfer coefficient significantly. At low surfactant concentrations, heat transfer coefficient increases with increasing surfactant concentration in water. The maximum heat transfer enhancement is found to be at 250 ppm of sodium oleate solution. By adding more surfactant to water, heat transfer coefficient is found to be lowered. Surface tension of different concentration of sodium oleate solutions is measured. It is observed that the maximum heat transfer coefficient is obtained at a surfactant concentration that corresponds to the critical micelle concentration (cmc) of the sodium oleate solution.Journal of Chemical Engineering, Vol. 29, No. 1, 2017: 44-48


2014 ◽  
Vol 925 ◽  
pp. 625-629 ◽  
Author(s):  
C.S. Oon ◽  
A. Badarudin ◽  
S.N. Kazi ◽  
M. Fadhli

The heat transfer in annular heat exchanger with titanium oxide of 1.0 volume % concentration as the medium of heat exchanger is considered in this study. The heat transfer simulation of the flow is performed by using Computational Fluid Dynamics package, Ansys Fluent. The heat transfer coefficients of water to titanium oxide nanofluid flowing in a horizontal counter-flow heat exchanger under turbulent flow conditions are investigated. The results show that the convective heat transfer coefficient of the nanofluid is slightly higher than that of the base fluid by several percents. The heat transfer coefficient increases with the increase of the mass flow rate of hot water and also the nanofluid.


1997 ◽  
Vol 119 (2) ◽  
pp. 381-389 ◽  
Author(s):  
M. E. Taslim ◽  
C. M. Wadsworth

Turbine blade cooling, a common practice in modern aircraft engines, is accomplished, among other methods, by passing the cooling air through an often serpentine passage in the core of the blade. Furthermore, to enhance the heat transfer coefficient, these passages are roughened with rib-shaped turbulence promoters (turbulators). Considerable data are available on the heat transfer coefficient on the passage surface between the ribs. However, the heat transfer coefficients on the surface of the ribs themselves have not been investigated to the same extent. In small aircraft engines with small cooling passages and relatively large ribs, the rib surfaces comprise a large portion of the passage heat transfer area. Therefore, an accurate account of the heat transfer coefficient on the rib surfaces is critical in the overall design of the blade cooling system. The objective of this experimental investigation was to conduct a series of 13 tests to measure the rib surface-averaged heat transfer coefficient, hrib, in a square duct roughened with staggered 90 deg ribs. To investigate the effects that blockage ratio, e/Dh and pitch-to-height ratio, S/e, have on hrib and passage friction factor, three rib geometries corresponding to blockage ratios of 0.133, 0.167, and 0.25 were tested for pitch-to-height ratios of 5, 7, 8.5, and 10. Comparisons were made between the rib average heat transfer coefficient and that on the wall surface between two ribs, hfloor, reported previously. Heat transfer coefficients of the upstream-most rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared. It is concluded that: 1 The rib average heat transfer coefficient is much higher than that for the area between the ribs; 2 similar to the heat transfer coefficient on the surface between the ribs, the average rib heat transfer coefficient increases with the blockage ratio; 3 a pitch-to-height ratios of 8.5 consistently produced the highest rib average heat transfer coefficients amongst all tested; 4 under otherwise identical conditions, ribs in upstream-most position produced lower heat transfer coefficients than the midchannel positions, 5 the upstream-most rib average heat transfer coefficients decreased with the blockage ratio; and 6 thermal performance decreased with increased blockage ratio. While a pitch-to-height ratio of 8.5 and 10 had the highest thermal performance for the smallest rib geometry, thermal performance of high blockage ribs did not change significantly with the pitch-to-height ratio.


Sign in / Sign up

Export Citation Format

Share Document