scholarly journals Evaluation of Emulsions. Part III. In Vivo Release of Water-Soluble Drugs from Stabilized Water-in-Oil-in-Water (W/O/W) Type Multiple Emulsions Following Intravenous Administrations Using Rats.

1993 ◽  
Vol 16 (3) ◽  
pp. 268-272 ◽  
Author(s):  
Tatsuharu MIYAKAWA ◽  
Wei ZHANG ◽  
Takahiro UCHIDA ◽  
Nak-Seo KIM ◽  
Shigeru GOTO
Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 199 ◽  
Author(s):  
Chang Kim ◽  
Si Sung ◽  
Eun Lee ◽  
Tae Kang ◽  
Ho Yoon ◽  
...  

As a platform for hepsin-specific drug delivery, we previously prepared IPLVVPLRRRRRRRRC peptide (RIPL)-conjugated nanostructured lipid carriers (RIPL-NLCs) composed of Labrafil® M 1944 CS (liquid oil) and Precirol® ATO 5 (solid lipid). In this study, to prevent the recognition by the mononuclear phagocyte system, polyethylene glycol (PEG)-modified RIPL-NLCs (PEG-RIPL-NLCs) were prepared using PEG3000 at different grafting ratios (1, 5, and 10 mole %). All prepared NLCs showed a homogeneous dispersion (130–280 nm), with zeta potentials varying from −18 to 10 mV. Docetaxel (DTX) was successfully encapsulated in NLCs: encapsulation efficiency (93–95%); drug-loading capacity (102–109 µg/mg). PEG-RIPL-NLCs with a grafting ratio of 5% PEG or higher showed significantly reduced protein adsorption and macrophage phagocytosis. The uptake of PEG(5%)-RIPL-NLCs by cancer cell lines was somewhat lower than that of RIPL-NLCs because of the PEG-induced steric hindrance; however, the uptake level of PEG-RIPL-NLCs was still greater than that of plain NLCs. In vivo biodistribution was evaluated after tail vein injection of NLCs to normal mice. Compared to RIPL-NLCs, PEG(5%)-RIPL-NLCs showed lower accumulation in the liver, spleen, and lung. In conclusion, we found that PEG(5%)-RIPL-NLCs could be a promising nanocarrier for selective drug targeting with a high payload of poorly water-soluble drugs.


2020 ◽  
Vol 56 (63) ◽  
pp. 8972-8975
Author(s):  
Marcos Navascuez ◽  
Damien Dupin ◽  
Hans-Jürgen Grande ◽  
Vanessa Gómez-Vallejo ◽  
Iraida Loinaz ◽  
...  

Herein, we report on the capacity of the amphiphilic inorganic anion cobalt bis(dicarbollide) to stabilise oil-in-water nanoemulsions (NEs).


2019 ◽  
Vol 4 (2) ◽  
pp. 121-129
Author(s):  
Satya Sankar Sahoo ◽  
Chandu Babu Rao

Formulation of poorly water-soluble drugs for oral drug delivery has always been a difficult task for formulation scientists. Lurasidone hydrochloride is one such agent which is used to control bipolar depre-ssion. The objective of this study was to formulate and optimize lurasi-done nanosuspension, further formulating optimized nanosuspensions as fast disintegrating tablets for improved patient compliance. In the present study, lurasidone nanosuspension was prepared by nanomilling technique. Optimized nanosuspension has mean particle diameter of 248.9 nm, polydispersity index of 0.127 and zeta potential of 18.1 mV. The lyophilized optimized nanocrystals, optimize nanosuspension as granulating fluid and as top spraying dispersion for granulation in fluid bed granulator being used to formulate fast disintegrating tablets with suitable super disintegrant. Croscarmellose sodium was found to be best superdisintegrant compared to sodium starch glycolate and crospovidone, as its acts by both mechanism swelling and wicking. Its swells 4-8 folds in less than 10 s. Many folds increase in the rate of drug release observed compare to micronized lurasidone and marketed product. There was no change in crystalline nature after nanomilling as characterized by XRD and FTIR, and it was found to be chemically stable with high drug content. The developed fast disintegrating tablets would be an alternative better formulation than its conventional formulation to address its bioavailability issue and for improved patient compliance. However, this should be further confirmed by appropriate in vivo studies.


2021 ◽  
Author(s):  
Marouene Bejaoui ◽  
Hanen Oueslati ◽  
Haykel Galai

Amorphous ternary solid dispersion has become one of the strategies commonly used for improving the solubility and bioavailability of poorly water soluble drugs. Such multicomponent solid dispersion can be obtained by different techniques, this chapter provides an overview of ternary solid dispersion by co-milling method from the perspectives of physico-chemical characteristics in vitro and in vivo performance. A considerable improvement of solubility was obtained for many active pharmaceutical ingredients (e.g., Ibuprofen, Probucol, Gliclazid, Fenofibrate, Ibrutinib and Naproxen) and this was correlated to the synergy of multiple factors (hydrophilicity enhancement, particle size reduction, drug-carrier interactions, anti-plasticizing effect and complexation efficiency). This enhanced pharmacokinetic properties and bioavailability of these drug molecules (1.49 to 15-folds increase in plasma drug concentration). A particular focus was accorded to compare the ternary and binary system including Ibuprofen and highlighting the contribution of thermal and spectral characterization techniques. The addition of polyvinylpyrrolidone (PVP K30), a low molecular weight molecule, into the binary solid dispersion (Ibuprofen/β-cyclodextrin), leads to a 1.5–2 folds increase in the drug intrinsic dissolution rate only after 10 min. This resulted from physical stabilization of amorphous Ibuprofen by reducing its molecular mobility and inhibiting its recristallization even under stress conditions (75% RH and T = 40°C for six months).


Sign in / Sign up

Export Citation Format

Share Document