macrophage phagocytosis
Recently Published Documents


TOTAL DOCUMENTS

535
(FIVE YEARS 161)

H-INDEX

59
(FIVE YEARS 7)

2022 ◽  
Vol 12 (3) ◽  
pp. 558-563
Author(s):  
Boxian Zhao ◽  
Weiguo Zhu

Multiple miRNAs are differentially expressed in gastric cancer (GC). Herein, this study aims to investigate miR-455’s role in GC and its mechanism. Exosomes (exo) separated from BMSCs after transfection were co-cultured with either phagocytes, GC cells (NCI-N87 cell), or macrophages combined with NCI-N87cells (mixed group) followed by analysis of the expression of PTEN, N-cadherin, E-cadherin, and PI3K, and AKT by RT-qPCR and Western blot. Increased miR-455 expression was observed in GC cells upon transfection. GC cells in the mixed group relative to NCI-N87 group exhibited a lower cell migration and invasion and impaired proliferative capacity (p < 0.05), accompanied with higher expressions of N-cadherin, E-cadherin, PI3K, and AKT, and decreased level of PTEN (p < 0.05). The combined treatment resulted in a higher phagocytic rate (12.38±0.21%) and phagocytic index (14.29±2.11%) compared to treatment with only phagocytes (p < 0.05). In conclusion, BMSC-derived exosomal miR-455 inhibits the growth of GC cells and promotes the phagocytosis through inactivating PI3K/AKT signaling pathway.


Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 113
Author(s):  
Jamie Medley ◽  
Aaron Goff ◽  
Paulo J. G. Bettencourt ◽  
Madelaine Dare ◽  
Liam Cole ◽  
...  

New strategies are required to reduce the worldwide burden of tuberculosis. Intracellular survival and replication of Mycobacterium tuberculosis after macrophage phagocytosis is a fundamental step in the complex host–pathogen interactions that lead to granuloma formation and disease. Greater understanding of how the bacterium survives and thrives in these environments will inform novel drug and vaccine discovery programs. Here, we use in-depth RNA sequencing of Mycobacterium bovis BCG from human THP-1 macrophages to describe the mycobacterial adaptations to the intracellular environment. We identify 329 significantly differentially regulated genes, highlighting cholesterol catabolism, the methylcitrate cycle and iron homeostasis as important for mycobacteria inside macrophages. Examination of multi-functional gene families revealed that 35 PE/PPE genes and five cytochrome P450 genes were upregulated 24 h after infection, highlighting pathways of potential significance. Comparison of the intracellular transcriptome to gene essentiality and immunogenicity studies identified 15 potential targets that are both required for intracellular survival and induced on infection, and eight upregulated genes that have been demonstrated to be immunogenic in TB patients. Further insight into these new and established targets will support drug and vaccine development efforts.


2022 ◽  
Vol 12 ◽  
Author(s):  
Dan He ◽  
Qiangdongzi Mao ◽  
Jialin Jia ◽  
Zhiyu Wang ◽  
Yu Liu ◽  
...  

The efficient removal of apoptotic cells (ACs), a process termed as efferocytosis, is essential for immune homeostasis. While recent work has established an important interplay between efferocytosis and cellular metabolic changing, underlying mechanisms remain poorly known. Here, we discovered that pentose phosphate pathway (PPP) regulates tolerogenic ACs clearance and immune tolerance. ACs decreased levels of PPP-related genes and metabolites in macrophages. AG1, the agonist of PPP, increased the activity of PPP but greatly reduced macrophage phagocytosis of ACs and enhanced the inflammatory response during efferocytosis. miR-323-5p regulated the expression of PPP-related genes and its levels increased during efferocytosis. miR-323-5p inhibitor greatly promoted levels of PPP-related genes, reduced the macrophage phagocytosis of ACs, and increased inflammatory response during efferocytosis, suggesting that miR-323-5p was essential in regulating PPP activity and ACs clearance in macrophages. Correspondingly, the PPP agonist AG1 exacerbated the lupus-like symptoms in the AC-induced systemic lupus erythematosus (SLE) model. Our study reveals that regulating PPP-dependent metabolic reprogramming is critical for tolerogenic ACs phagocytosis and immune tolerance.


2022 ◽  
Vol 12 ◽  
Author(s):  
Julia Bitencourt ◽  
Marco Polo Peralta-Álvarez ◽  
Morven Wilkie ◽  
Ashley Jacobs ◽  
Daniel Wright ◽  
...  

Tuberculosis (TB) is a major global health problem and the only currently-licensed vaccine, BCG, is inadequate. Many TB vaccine candidates are designed to be given as a boost to BCG; an understanding of the BCG-induced immune response is therefore critical, and the opportunity to relate this to circumstances where BCG does confer protection may direct the design of more efficacious vaccines. While the T cell response to BCG vaccination has been well-characterized, there is a paucity of literature on the humoral response. We demonstrate BCG vaccine-mediated induction of specific antibodies in different human populations and macaque species which represent important preclinical models for TB vaccine development. We observe a strong correlation between antibody titers in serum versus plasma with modestly higher titers in serum. We also report for the first time the rapid and transient induction of antibody-secreting plasmablasts following BCG vaccination, together with a robust and durable memory B cell response in humans. Finally, we demonstrate a functional role for BCG vaccine-induced specific antibodies in opsonizing mycobacteria and enhancing macrophage phagocytosis in vitro, which may contribute to the BCG vaccine-mediated control of mycobacterial growth observed. Taken together, our findings indicate that the humoral immune response in the context of BCG vaccination merits further attention to determine whether TB vaccine candidates could benefit from the induction of humoral as well as cellular immunity.


2022 ◽  
Author(s):  
Allison Cohen ◽  
Edwin Jeng ◽  
Mark Voorhies ◽  
Jane Symington ◽  
Nebat Ali ◽  
...  

The fungal pathogen Histoplasma capsulatum (Hc) invades, replicates within, and destroys macrophages. To interrogate the molecular mechanisms underlying this interaction, we conducted a host-directed CRISPR-Cas9 screen and identified 361 genes that modify macrophage susceptibility to Hc infection, greatly expanding our understanding of host gene networks targeted by Hc. We identified pathways that have not been previously implicated in Hc interaction with macrophages, including the ragulator complex (involved in nutrient stress sensing), glycosylation enzymes, protein degradation machinery, mitochondrial respiration genes, solute transporters, and the ER membrane complex (EMC). The highest scoring protective hits included the complement C3a receptor (C3aR), a G-protein coupled receptor (GPCR) that recognizes the complement fragment C3a. Although it is known that the complement system reacts with the fungal surface, leading to opsonization and release of small peptide fragments such as C3a, a role for C3aR in macrophage susceptibility to fungi has not been elucidated. We demonstrated that whereas C3aR is dispensable for macrophage phagocytosis of bacteria and latex beads, it is critical for optimal macrophage capture of pathogenic fungi, including Hc,the ubiquitous fungal pathogen Candida albicans, and the causative agent of Valley Fever Coccidioides posadasii. We showed that C3aR localizes to the early phagosome during H. capsulatum infection where it coordinates the formation of actin-rich membrane protrusions that promote Hc capture. We also showed that the EMC promotes surface expression of C3aR, likely explaining its identification in our screen. Taken together, our results provide new insight into host processes that affect Hc-macrophage interactions and uncover a novel and specific role for C3aR in macrophage recognition of fungi.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Ya-Ru Lin ◽  
Qing-Yun Guan ◽  
Ling-Yu Li ◽  
Zhi-Mei Tang ◽  
Qiang Zhang ◽  
...  

The soluble polysaccharides from a non-conventional and edible plant purslane (Portulaca oleracea L.), namely PSPO, were prepared by the water extraction and ethanol precipitation methods in this study. The obtained PSPO were selenylated using the Na2SeO3-HNO3 method to successfully prepare two selenylated products, namely SePSPO-1 and SePSPO-2, with different selenylation extents. The assay results confirmed that SePSPO-1 and SePSPO-2 had respective Se contents of 753.8 and 1325.1 mg/kg, while PSPO only contained Se element about 80.6 mg/kg. The results demonstrated that SePSPO-1 and SePSPO-2 had higher immune modulation than PSPO (p < 0.05), when using the two immune cells (murine splenocytes and RAW 264.7 macrophages) as two cell models. Specifically, SePSPO-1 and SePSPO-2 were more active than PSPO in the macrophages, resulting in higher cell proliferation, greater macrophage phagocytosis, and higher secretion of the immune-related three cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β. Meanwhile, SePSPO-1 and SePSPO-2 were more potent than PSPO in the concanavalin A- or lipopolysaccharide-stimulated splenocytes in cell proliferation, or more able than PSPO in the splenocytes to promote interferon-γ secretion but suppress IL-4 secretion, or more capable of enhancing the ratio of T-helper (CD4+) cells to T-cytotoxic (CD8+) cells for the T lymphocytes than PSPO. Overall, the higher selenylation extent of the selenylated PSPO mostly caused higher immune modulation in the model cells, while a higher polysaccharide dose consistently led to the greater regulation effect. Thus, it is concluded that the employed chemical selenylation could be used in the chemical modification of purslane or other plant polysaccharides, when aiming to endow the polysaccharides with higher immuno-modulatory effect on the two immune cells.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Haiyan Liu ◽  
Jin Zhao ◽  
Yujun Lin ◽  
Min Su ◽  
Laijun Lai

Abstract Background Alzheimer’s disease (AD) is a devastating age-related neurodegenerative disorder and characterized by progressive loss of memory and cognitive functions, which are associated with amyloid-beta (Aβ) plaques. Immune cells play an important role in the clearance of Aβ deposits. Immune responses are regulated by immune regulators in which the B7 family members play a crucial role. We have recently identified erythroid membrane-associated protein (ERMAP) as a novel B7 family-related immune regulator and shown that ERMAP protein affects T cell and macrophage functions. Methods We produced a monoclonal antibody (mAb) against ERMAP protein and then determined the ability of the mAb to affect cognitive performance and AD pathology in mice. Results  We have shown that the anti-ERMAP mAb neutralizes the T cell inhibitory activity of ERMAP and enhances macrophages to phagocytose Aβ in vitro. Administration of the mAb into AD mice improves cognitive performance and reduces Aβ plaque load in the brain. This is related to increased proportion of T cells, especially IFNγ-producing T cells, in the spleen and the choroid plexus (CP), enhanced expression of immune cell trafficking molecules in the CP, and increased migration of monocyte-derived macrophages into the brain. Furthermore, the production of anti-Aβ antibodies in the serum and the macrophage phagocytosis of Aβ are enhanced in the anti-ERMAP mAb-treated AD mice. Conclusions Our results suggest that manipulating the ERMAP pathway has the potential to provide a novel approach to treat AD patients.


Sign in / Sign up

Export Citation Format

Share Document