scholarly journals Functional Cloning and Expression of emeA, and Characterization of EmeA, a Multidrug Efflux Pump from Enterococcus faecalis

2003 ◽  
Vol 26 (2) ◽  
pp. 266-270 ◽  
Author(s):  
Eun-Woo Lee ◽  
Jing Chen ◽  
Md. Nazmul Huda ◽  
Teruo Kuroda ◽  
Tohru Mizushima ◽  
...  
2003 ◽  
Vol 47 (6) ◽  
pp. 419-427 ◽  
Author(s):  
Md. Nazmul Huda ◽  
Jing Chen ◽  
Yuji Morita ◽  
Teruo Kuroda ◽  
Tohru Mizushima ◽  
...  

2002 ◽  
Vol 46 (11) ◽  
pp. 3386-3393 ◽  
Author(s):  
Patricia Sánchez ◽  
Ana Alonso ◽  
Jose L. Martinez

ABSTRACT We report on the cloning of the gene smeT, which encodes the transcriptional regulator of the Stenotrophomonas maltophilia efflux pump SmeDEF. SmeT belongs to the TetR and AcrR family of transcriptional regulators. The smeT gene is located upstream from the structural operon of the pump genes smeDEF and is divergently transcribed from those genes. Experiments with S. maltophilia and the heterologous host Escherichia coli have demonstrated that SmeT is a transcriptional repressor. S1 nuclease mapping has demonstrated that expression of smeT is driven by a single promoter lying close to the 5′ end of the gene and that expression of smeDEF is driven by an unique promoter that overlaps with promoter PsmeT. The level of expression of smeT is higher in smeDEF-overproducing S. maltophilia strain D457R, which suggests that SmeT represses its own expression. Band-shifting assays have shown that wild-type strain S. maltophilia D457 contains a cellular factor(s) capable of binding to the intergenic smeT-smeD region. That cellular factor(s) was absent from smeDEF-overproducing S. maltophilia strain D457R. The sequence of smeT from D457R showed a point mutation that led to a Leu166Gln change within the SmeT protein. This change allowed overexpression of both smeDEF and smeT in D457R. It was noteworthy that expression of wild-type SmeT did not fully complement the smeT mutation in D457R. This suggests that the wild-type protein is not dominant over the mutant SmeT.


2003 ◽  
Vol 47 (12) ◽  
pp. 3733-3738 ◽  
Author(s):  
Eun-Woo Lee ◽  
M. Nazmul Huda ◽  
Teruo Kuroda ◽  
Tohru Mizushima ◽  
Tomofusa Tsuchiya

ABSTRACT A DNA fragment responsible for resistance to antimicrobial agents was cloned from the chromosomal DNA of Enterococcus faecalis ATCC 29212 by using drug-hypersensitive mutant Escherichia coli KAM32 as a host cell. Cells of E. coli KAM32 harboring a recombinant plasmid (pAEF82) carrying the DNA fragment became resistant to many structurally unrelated antimicrobial agents, such as norfloxacin, ciprofloxacin, doxycycline, acriflavine, 4′,6-diamidino-2-phenylindole, tetraphenylphosphonium chloride, daunorubicin, and doxorubicin. Since the sequence of the whole genome of E. faecalis is known, we sequenced several portions of the DNA insert in plasmid pAEF82 and identified two open reading frames within the insert. We designated the genes efrA and efrB. A search of the deduced amino acid sequences of EfrA and EfrB revealed that they are similar to each other and that they belong to the ATP-binding cassette (ABC) family of multidrug efflux transporters. Transformed E. coli KAM32 cells harboring efrAB showed energy-dependent efflux of acriflavine. The efflux activity was inhibited by reserpine, verapamil, and sodium-o-vanadate, known inhibitors of ABC efflux pumps.


2008 ◽  
Vol 54 (5) ◽  
pp. 411-416 ◽  
Author(s):  
Sanela Begic ◽  
Elizabeth A. Worobec

Serratia marcescens is an important nosocomial agent having high antibiotic resistance. A major mechanism for S. marcescens antibiotic resistance is active efflux. To ascertain the substrate specificity of the S. marcescens SdeCDE efflux pump, we constructed pump gene deletion mutants. sdeCDE knockout strains showed no change in antibiotic susceptibility in comparison with the parental strains for any of the substrates, with the exception of novobiocin. In addition, novobiocin was the only antibiotic to be accumulated by sdeCDE-deficient strains. Based on the substrates used in our study, we conclude that SdeCDE is a Resistance–Nodulation–Cell Division family pump with limited substrate specificity.


2003 ◽  
Vol 47 (12) ◽  
pp. 937-943 ◽  
Author(s):  
Xing-Jue Xu ◽  
Xian-Zhong Su ◽  
Yuji Morita ◽  
Teruo Kuroda ◽  
Tohru Mizushima ◽  
...  

2003 ◽  
Vol 47 (9) ◽  
pp. 2990-2992 ◽  
Author(s):  
Hiroshi Sekiya ◽  
Takehiko Mima ◽  
Yuji Morita ◽  
Teruo Kuroda ◽  
Tohru Mizushima ◽  
...  

ABSTRACT We isolated mutant YM644, which showed elevated resistance to norfloxacin, ethidium bromide, acriflavine, and rhodamine 6G, from Pseudomonas aeruginosa YM64, a strain that lacks four major multidrug efflux pumps. The genes responsible for the resistance were mexHI-opmD. Elevated ethidium extrusion was observed with cells of YM644 and YM64 harboring a plasmid carrying the genes. Disruption of the genes in the chromosomal DNA of YM644 made the cells sensitive to the drugs.


2008 ◽  
Vol 18 (5) ◽  
pp. 646-652
Author(s):  
Hyun-Ju Kwon ◽  
Byung-Woo Kim ◽  
Kwang-Hyeon Kim ◽  
Young-Hee Kim ◽  
Eun-Woo Lee

2019 ◽  
Vol 201 (20) ◽  
Author(s):  
Grace A. Beggs ◽  
Yaramah M. Zalucki ◽  
Nicholas Gene Brown ◽  
Sheila Rastegari ◽  
Rebecca K. Phillips ◽  
...  

ABSTRACT Neisseria gonorrhoeae responds to host-derived antimicrobials by inducing the expression of the mtrCDE-encoded multidrug efflux pump, which expels microbicides, such as bile salts, fatty acids, and multiple extrinsically administered drugs, from the cell. In the absence of these cytotoxins, the TetR family member MtrR represses the mtrCDE genes. Although antimicrobial-dependent derepression of mtrCDE is clear, the physiological inducers of MtrR are unknown. Here, we report the crystal structure of an induced form of MtrR. In the binding pocket of MtrR, we observed electron density that we hypothesized was N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), a component of the crystallization reagent. Using the MtrR-CAPS structure as an inducer-bound template, we hypothesized that bile salts, which bear significant chemical resemblance to CAPS, are physiologically relevant inducers. Indeed, characterization of MtrR-chenodeoxycholate and MtrR-taurodeoxycholate interactions, both in vitro and in vivo, revealed that these bile salts, but not glyocholate or taurocholate, bind MtrR tightly and can act as bona fide inducers. Furthermore, two residues, W136 and R176, were shown to be important in binding chenodeoxycholate but not taurodeoxycholate, suggesting different binding modes of the bile salts. These data provide insight into a crucial mechanism utilized by the pathogen to overcome innate human defenses. IMPORTANCE Neisseria gonorrhoeae causes a significant disease burden worldwide, and a meteoric rise in its multidrug resistance has reduced the efficacy of antibiotics previously or currently approved for therapy of gonorrheal infections. The multidrug efflux pump MtrCDE transports multiple drugs and host-derived antimicrobials from the bacterial cell and confers survival advantage on the pathogen within the host. Transcription of the pump is repressed by MtrR but relieved by the cytosolic influx of antimicrobials. Here, we describe the structure of induced MtrR and use this structure to identify bile salts as physiological inducers of MtrR. These findings provide a mechanistic basis for antimicrobial sensing and gonococcal protection by MtrR through the derepression of mtrCDE expression after exposure to intrinsic and clinically applied antimicrobials.


Sign in / Sign up

Export Citation Format

Share Document