scholarly journals Medicinal Foodstuffs. XIV. On the Bioactive Constituents of Moroheiya. (2): New Fatty Acids, Corchorifatty Acids A, B, C, D, E, and F, from the Leaves of Corchorus olitorius L. (Tiliaceae): Structures and Inhibitory Effect on NO Production in Mouse Peritoneal Macrophages.

1998 ◽  
Vol 46 (6) ◽  
pp. 1008-1014 ◽  
Author(s):  
Masayuki YOSHIKAWA ◽  
Toshiyuki MURAKAMI ◽  
Hiromi SHIMADA ◽  
Satoshi YOSHIZUMI ◽  
Masami SAKA ◽  
...  
Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 480
Author(s):  
Alma M. Astudillo ◽  
Clara Meana ◽  
Miguel A. Bermúdez ◽  
Alfonso Pérez-Encabo ◽  
María A. Balboa ◽  
...  

Positional isomers of hexadecenoic acid are considered as fatty acids with anti-inflammatory properties. The best known of them, palmitoleic acid (cis-9-hexadecenoic acid, 16:1n-7), has been identified as a lipokine with important beneficial actions in metabolic diseases. Hypogeic acid (cis-7-hexadecenoic acid, 16:1n-9) has been regarded as a possible biomarker of foamy cell formation during atherosclerosis. Notwithstanding the importance of these isomers as possible regulators of inflammatory responses, very little is known about the regulation of their levels and distribution and mobilization among the different lipid pools within the cell. In this work, we describe that the bulk of hexadecenoic fatty acids found in mouse peritoneal macrophages is esterified in a unique phosphatidylcholine species, which contains palmitic acid at the sn-1 position, and hexadecenoic acid at the sn-2 position. This species markedly decreases when the macrophages are activated with inflammatory stimuli, in parallel with net mobilization of free hexadecenoic acid. Using pharmacological inhibitors and specific gene-silencing approaches, we demonstrate that hexadecenoic acids are selectively released by calcium-independent group VIA phospholipase A2 under activation conditions. While most of the released hexadecenoic acid accumulates in free fatty acid form, a significant part is also transferred to other phospholipids to form hexadecenoate-containing inositol phospholipids, which are known to possess growth-factor-like-properties, and are also used to form fatty acid esters of hydroxy fatty acids, compounds with known anti-diabetic and anti-inflammatory properties. Collectively, these data unveil new pathways and mechanisms for the utilization of palmitoleic acid and its isomers during inflammatory conditions, and raise the intriguing possibility that part of the anti-inflammatory activity of these fatty acids may be due to conversion to other lipid mediators.


1993 ◽  
Vol 177 (2) ◽  
pp. 511-516 ◽  
Author(s):  
X Zhang ◽  
D C Morrison

Preculture of thioglycollate-elicited C3HeB/FeJ mouse peritoneal macrophages in vitro with subthreshold stimulatory concentrations of lipopolysaccharide (LPS) can induce hyporesponsiveness (desensitization) to both tumor necrosis factor alpha (TNF-alpha) and nitric oxide (NO) production when these cells are subsequently stimulated with 100 ng/ml of LPS. We have established, however, that the primary dose of LPS required for inducing downregulation of NO production is significantly lower than that required for inducing downregulation of TNF-alpha production. Further, when LPS-pretreated macrophages become refractory to subsequent LPS stimulation for NO production, the secondary LPS-stimulated TNF-alpha production is markedly enhanced, and vice versa. These results indicate that LPS-induced TNF-alpha and NO production by macrophages are differentially regulated, and that the observed desensitization process may not reflect a state in which macrophages are totally refractory to subsequent LPS stimulation. Rather, our data suggest that LPS-pretreated macrophages become selectively primed for differential responses to LPS. The LPS-induced selective priming effects are not restricted to LPS stimulation, but extend as well to stimuli such as zymosan, Staphylococcus aureus, and heat-killed Listeria monocytogenes.


2017 ◽  
Vol 62 (No. 12) ◽  
pp. 668-673 ◽  
Author(s):  
K. Nofouzi ◽  
M. Aghapour ◽  
B. Baradaran ◽  
GH Hamidian ◽  
P. Zare ◽  
...  

Tsukamurella inchonensis (T. inchonensis) is an aerobic species of Actinomycetales which has immunomodulatory activities when used as a suspension of killed bacilli. Here, the effects of T. inchonensis on lipopolysaccharide-induced inflammatory responses in mouse peritoneal macrophages have been examined. Peritoneal macrophages were harvested by lavaging with ice cold phosphate-buffered saline. Macrophages acquired from mice treated with different doses of T. inchonensis for seven days were cultured with 20 U/ml interferon-γ and 10 µg/ml lipopolysaccharide for in vivo assays. Nitrite levels were measured by using the diazotization method based on the Griess reaction, an indirect technique to determine nitric oxide (NO) production. T. inchonensis inhibited lipopolysaccharide-stimulated NO production in mouse peritoneal macrophages from mice previously exposed to concentrations of 108 and 5 × 10<sup>7</sup> CFU per flask. Also, T. inchonensis decreased lipopolysaccharide-induced production of pro-inflammatory cytokines, including interleukin-6 and tumor necrosis factor-α. Thus, it can be concluded that T. inchonensis is a powerful inhibitor of lipopolysaccharide-induced NO production in activated murine macrophages, and T. inchonensis may be useful as a novel agent for chemoprevention in inflammatory diseases.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6533
Author(s):  
Juraj Harmatha ◽  
Miloš Buděšínský ◽  
Zdeněk Zídek ◽  
Eva Kmoníčková

Saponins, a diverse group of natural compounds, offer an interesting pool of derivatives with biomedical application. In this study, three structurally related spirostanol saponins were isolated and identified from the leek flowers of Allium porrum L. (garden leek). Two of them were identical with the already known leek plant constituents: aginoside (1) and 6-deoxyaginoside (2). The third one was identified as new component of A. porrum; however, it was found identical with yayoisaponin A (3) obtained earlier from a mutant of elephant garlic Allium ampeloprasun L. It is a derivative of the aginoside (1) with additional glucose in its glycosidic chain, identified by MS and NMR analysis as (2α, 3β, 6β, 25R)-2,6-dihydroxyspirostan-3-yl β-D-glucopyranosyl-(1 → 3)-β-D-glucopranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucopyranosyl]-(1 → 4)-β-D-galactopyranoside, previously reported also under the name alliporin. The leek native saponins were tested together with other known and structurally related saponins (tomatonin and digitonin) and with their related aglycones (agigenin and diosgenin) for in vitro cytotoxicity and for effects on NO production in mouse peritoneal cells. The highest inhibitory effects were exhibited by 6-deoxyaginoside. The obtained toxicity data, however, closely correlated with the suppression of NO production. Therefore, an unambiguous linking of obtained bioactivities of saponins with their expected immunobiological properties remained uncertain.


Sign in / Sign up

Export Citation Format

Share Document