scholarly journals Heat-killed Tsukamurella inchonensis reduces lipopolysaccharide-induced inflammatory responses in activated murine peritoneal macrophages

2017 ◽  
Vol 62 (No. 12) ◽  
pp. 668-673 ◽  
Author(s):  
K. Nofouzi ◽  
M. Aghapour ◽  
B. Baradaran ◽  
GH Hamidian ◽  
P. Zare ◽  
...  

Tsukamurella inchonensis (T. inchonensis) is an aerobic species of Actinomycetales which has immunomodulatory activities when used as a suspension of killed bacilli. Here, the effects of T. inchonensis on lipopolysaccharide-induced inflammatory responses in mouse peritoneal macrophages have been examined. Peritoneal macrophages were harvested by lavaging with ice cold phosphate-buffered saline. Macrophages acquired from mice treated with different doses of T. inchonensis for seven days were cultured with 20 U/ml interferon-γ and 10 µg/ml lipopolysaccharide for in vivo assays. Nitrite levels were measured by using the diazotization method based on the Griess reaction, an indirect technique to determine nitric oxide (NO) production. T. inchonensis inhibited lipopolysaccharide-stimulated NO production in mouse peritoneal macrophages from mice previously exposed to concentrations of 108 and 5 × 10<sup>7</sup> CFU per flask. Also, T. inchonensis decreased lipopolysaccharide-induced production of pro-inflammatory cytokines, including interleukin-6 and tumor necrosis factor-α. Thus, it can be concluded that T. inchonensis is a powerful inhibitor of lipopolysaccharide-induced NO production in activated murine macrophages, and T. inchonensis may be useful as a novel agent for chemoprevention in inflammatory diseases.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
E. Sánchez-Miranda ◽  
J. Lemus-Bautista ◽  
S. Pérez ◽  
J. Pérez-Ramos

Kramecyne is a new peroxide, it was isolated fromKrameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases.


2007 ◽  
Vol 76 (1) ◽  
pp. 270-277 ◽  
Author(s):  
Takashi Shimizu ◽  
Yutaka Kida ◽  
Koichi Kuwano

ABSTRACT The pathogenesis of Mycoplasma pneumoniae infection is considered to be in part attributable to excessive immune responses. In this study, we investigated whether synthetic lipopeptides of subunit b of F0F1-type ATPase (F0F1-ATPase), NF-κB-activating lipoprotein 1 (N-ALP1), and N-ALP2 (named FAM20, sN-ALP1, and sN-ALP2, respectively) derived from M. pneumoniae induce cytokine and chemokine production and leukocyte infiltration in vivo. Intranasal administration of FAM20 and sN-ALP2 induced infiltration of leukocyte cells and production of chemokines and cytokines in bronchoalveolar lavage fluid, but sN-ALP1 failed to do so. The activity of FAM20 was notably higher than that of sN-ALP2. FAM20 and sN-ALP2 induced tumor necrosis factor alpha (TNF-α) through Toll-like receptor 2 in mouse peritoneal macrophages. Moreover, in the range of low concentrations of lipopeptides, FAM20 showed relatively high activity of inducing TNF-α in mouse peritoneal macrophages compared to synthetic lipopeptides such as MALP-2 and FSL-1, derived from Mycoplasma fermentans and Mycoplasma salivarium, respectively. These findings indicate that the F0F1-ATPase might be a key molecule in inducing cytokines and chemokines contributing to inflammatory responses during M. pneumoniae infection in vivo.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 486 ◽  
Author(s):  
Sheelu Monga ◽  
Rafi Nagler ◽  
Rula Amara ◽  
Abraham Weizman ◽  
Moshe Gavish

The 18 kDa translocator protein (TSPO) ligands 2-Cl-MGV-1 and MGV-1 can attenuate cell death of astrocyte-like cells (U118MG) and induce differentiation of neuronal progenitor cells (PC-12). Lipopolysaccharide (LPS) is a bacterial membrane endotoxin that activates cellular inflammatory pathways by releasing pro-inflammatory molecules, including cytokines and chemokines. The aim of the present study was to assess the immuno-modulatory effect of TSPO ligands in activated microglial cells. We demonstrated that the TSPO ligands 2-Cl-MGV-1 and MGV-1 can prevent LPS-induced activation of microglia (BV-2 cell line). Co-treatment of LPS (100 ng/mL) with these TSPO ligands (final concentration- 25 µM) reduces significantly the LPS-induced release of interleukin-6 (IL-6) from 16.9-fold to 2.5-fold, IL-β from 8.3-fold to 1.6-fold, interferon-γ from 16.0-fold to 2.2-fold, and tumor necrosis factor-α from 16.4-fold to 1.8-fold. This anti-inflammatory activity seems to be achieved by inhibition of NF-κB p65 activation. Assessment of initiation of ROS generation and cell metabolism shows significant protective effects of these two novel TSPO ligands. The IL-10 and IL-13 levels were not affected by any of the TSPO ligands. Thus, it appears that the ligands suppress the LPS-induced activation of some inflammatory responses of microglia. Such immunomodulatory effects may be relevant to the pharmacotherapy of neuro-inflammatory diseases.


2012 ◽  
Vol 40 (01) ◽  
pp. 135-149 ◽  
Author(s):  
Min-Cheol Kim ◽  
Dae-Seung Kim ◽  
Su-Jin Kim ◽  
Jinbong Park ◽  
Hye-Lin Kim ◽  
...  

Eucommiae cortex (EC) is used in various traditional Korean medicines in the form of tonics, analgesics, and sedatives. However, the underlying mechanism of its anti-inflammatory effect remains unclear. This study attempts to determine the effects of EC on lipopolysaccharide (LPS)-induced inflammatory responses in mouse peritoneal macrophages. The findings of the study show that EC inhibits the LPS-induced production of tumor necrosis factor-alpha and interleukin-6. Exposure to EC also reduces an inflammation-induced increase in the levels of cyclooxigenase-2 and the production of prostaglandin E 2 and nitric oxide in mouse peritoneal macrophages. Furthermore, EC suppresses the activation of nuclear factor-kappa B and caspase-1. These results provide novel insights into the pharmacological action of EC and indicate that EC has a potential in the treatment of inflammatory diseases.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 859 ◽  
Author(s):  
Zubair Ahmed Ratan ◽  
Deok Jeong ◽  
Nak Yoon Sung ◽  
Youn Young Shim ◽  
Martin J. T. Reaney ◽  
...  

Although flax (Linum usitatissimum L.) has long been used as Ayurvedic medicine, its anti-inflammatory role is still unclear. Therefore, we aimed to investigate the anti-inflammatory role of a linusorb mixture (LOMIX) recovered from flaxseed oil. Effects of LOMIX on inflammation and its mechanism of action were examined using several in vitro assays (i.e., NO production, real-time PCR analysis, luciferase-reporter assay, Western blot analysis, and kinase assay) and in vivo analysis with animal inflammation models as well as acute toxicity test. Results: LOMIX inhibited NO production, cell shape change, and inflammatory gene expression in stimulated RAW264.7 cells through direct targeting of Src and Syk in the NF-κB pathway. In vivo study further showed that LOMIX alleviated symptoms of gastritis, colitis, and hepatitis in murine model systems. In accordance with in vitro results, the in vivo anti-inflammatory effects were mediated by inhibition of Src and Syk. LOMIX was neither cytotoxic nor did it cause acute toxicity in mice. In addition, it was found that LOB3, LOB2, and LOA2 are active components included in LOMIX, as assessed by NO assay. These in vitro and in vivo results suggest that LOMIX exerts an anti-inflammatory effect by inhibiting the inflammatory responses of macrophages and ameliorating symptoms of inflammatory diseases without acute toxicity and is a promising anti-inflammatory medication for inflammatory diseases.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Han Gyung Kim ◽  
Subin Choi ◽  
Jongsung Lee ◽  
Yo Han Hong ◽  
Deok Jeong ◽  
...  

Celtis choseniana is the traditional plant used at Korea as a herbal medicine to ameliorate inflammatory responses. Although Celtis choseniana has been traditionally used as a herbal medicine at Korea, no systemic research has been conducted on its anti-inflammatory activity. Therefore, the present study explored an anti-inflammatory effect and its underlying molecular mechanism using Celtis choseniana methanol extract (Cc-ME) in macrophage-mediated inflammatory responses. In vitro anti-inflammatory activity of Cc-ME was evaluated using RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS), pam3CSK4 (Pam3), or poly(I:C). In vivo anti-inflammatory activity of Cc-ME was investigated using acute inflammatory disease mouse models, such as LPS-induced peritonitis and HCl/EtOH-induced gastritis. The molecular mechanism of Cc-ME-mediated anti-inflammatory activity was examined by Western blot analysis and immunoprecipitation using whole cell and nuclear fraction prepared from the LPS-stimulated RAW264.7 cells and HEK293 cells. Cc-ME inhibited NO production and mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and tumor necrosis factor-alpha (TNF-α) in the RAW264.7 cells and peritoneal macrophages induced by LPS, pam3, or poly(I:C) without cytotoxicity. High-performance liquid chromatography (HPLC) analysis showed that Cc-ME contained anti-inflammatory flavonoids quercetin, luteolin, and kaempferol. Among those, the content of luteolin, which showed an inhibitory effect on NO production, was highest. Cc-ME suppressed the NF-κB signaling pathway by targeting Src and interrupting molecular interactions between Src and p85, its downstream kinase. Moreover, Cc-ME ameliorated the morphological finding of peritonitis and gastritis in the mouse disease models. Therefore, these results suggest that Cc-ME exerted in vitro and in vivo anti-inflammatory activity in LPS-stimulated macrophages and mouse models of acute inflammatory diseases. This anti-inflammatory activity of Cc-ME was dominantly mediated by targeting Src in NF-κB signaling pathway during macrophage-mediated inflammatory responses.


2008 ◽  
Vol 86 (10) ◽  
pp. 682-690 ◽  
Author(s):  
Hyo-Jin An ◽  
Hong-Kun Rim ◽  
Jong-Hyun Lee ◽  
Se-Eun Suh ◽  
Ji-Hyun Lee ◽  
...  

Using mouse peritoneal macrophages, we have examined the mechanism by which Leonurus sibiricus (LS) regulates nitric oxide (NO) production. When LS was used in combination with recombinant interferon-γ (rIFN-γ), there was a marked cooperative induction of NO production; however, LS by itself had no effect on NO production. The increased production of NO from rIFN-γ plus LS-stimulated cells was almost completely inhibited by pretreatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of nuclear factor κB. Furthermore, treatment of peritoneal macrophages with rIFN-γ plus LS caused a significant increase in tumor necrosis factor-α (TNF-α) production. PDTC also decreased the effect of LS on TNF-α production significantly. Because NO and TNF-α play an important role in immune function and host defense, LS treatment could modulate several aspects of host defense mechanisms as a result of stimulation of the inducible nitric oxide synthase.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Elizabeth Sánchez Miranda ◽  
Julia Pérez Ramos ◽  
Cristina Fresán Orozco ◽  
Miguel Angel Zavala Sánchez ◽  
Salud Pérez Gutiérrez

We examined the effects of a chloroform extract of Hyptis albida (CHA) on inflammatory responses in mouse lipopolysaccharide (LPS) induced peritoneal macrophages. Our findings indicate that CHA inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6). During the process, levels of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), and nitric oxide (NO) increased in the mouse peritoneal macrophages; however, the extract suppressed them significantly. These results provide novel insights into the anti-inflammatory actions of CHA and support its potential use in the treatment of inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document