scholarly journals Development and Analysis of Novel Therapeutic Targets to Improve Pancreatic β-Cell Function in Type 2 Diabetes

2016 ◽  
Vol 136 (12) ◽  
pp. 1623-1629 ◽  
Author(s):  
Yukiko K. Kaneko
2014 ◽  
Vol 37 (6) ◽  
pp. 414 ◽  
Author(s):  
Ravi Retnakaran

A fundamental problem in the clinical management of type 2 diabetes is the inability to prevent the ongoing deterioration of pancreatic beta-cell function over time that underlies the chronic progressive nature of this condition. Importantly, beta-cell dysfunction has both reversible and irreversible components. Furthermore, the amelioration of reversible beta-cell dysfunction through the early institution of short-term insulin-based therapy has emerged as a strategy that can yield temporary remission of type 2 diabetes. In this context, we have forwarded a novel therapeutic paradigm consisting of initial induction therapy to improve beta-cell function early in the course of diabetes followed by maintenance therapy aimed at preserving this beneficial beta-cell effect. Ultimately, this approach may yield an optimized therapeutic strategy for the durable preservation of beta-cell function and consequent modification of the natural history of type 2 diabetes.


2021 ◽  
Author(s):  
Mara Suleiman ◽  
Xiaoyan Yi ◽  
Emanuele Bosi ◽  
Frederic Burdet ◽  
Carmela De Luca ◽  
...  

Abstract Remission of type 2 diabetes (T2D) may occur after very low-calorie diets or bariatric surgery, and is associated with improved pancreatic beta cell function. Here, we evaluated if T2D beta cell dysfunction can be rescued ex-vivo and which are the molecular mechanisms involved. Islets from 19 T2D donors were studied after isolation (“basal”) and following culture at 5.5 or 11.1 mmol/l glucose (“cultured”). We evaluated glucose-stimulated insulin secretion (GSIS) and transcriptomes by RNA sequencing, correlated insulin secretion changes (“cultured” vs “basal”) to global gene expression, and searched for potential therapeutic gene targets and compounds that mimic gene signatures of recovered beta cell function in T2D islets. GSIS improved in 12 out of 19 islet preparations from T2D donors after culture at 5.5 mmol/l glucose (insulin stimulation index increased from 1.4±0.1 to 2.3±0.2, p<0.01), mainly due to greater insulin response to high glucose. No improvement was seen in islets cultured at 11.1 mmol/l glucose. Functional improvement was accompanied by changes in expression of 438 genes, many of which involved in functional and inflammatory processes. Of them, 123 were significantly correlated with changes in glucose-stimulated insulin secretion. Drug repurposing and target identification analyses for beta cell functional recovery predicted several chemical (including Src inhibitors and anti-inflammatory drugs) and genetic hits in pathways such as chemokine, MAPK, ERBB signaling, and autophagy. In conclusion, defective insulin secretion in T2D can be rescued, at least in part, by a “non-diabetic” milieu, demonstrating important T2D beta cell functional plasticity. This recovery associates with specific transcriptomic traits, pointing to known as well as novel therapeutic targets to induce T2D remission.


Sign in / Sign up

Export Citation Format

Share Document