Stance phase knee and ankle kinematics and kinetics during level and downhill running

1990 ◽  
Vol 22 (5) ◽  
pp. 669-677 ◽  
Author(s):  
FRANK L. BUCZEK ◽  
PETER R. CAVANAGH
2014 ◽  
Vol 47 (1) ◽  
pp. 113-118 ◽  
Author(s):  
H. M. Clayton ◽  
N. C. Stubbs ◽  
M. Lavagnino

2017 ◽  
Vol 2 (3) ◽  
pp. 2473011417S0003
Author(s):  
Daniel Sturnick ◽  
Constantine Demetracopoulos ◽  
Guilherme Honda Saito

Category: Ankle, Ankle Arthritis, Hindfoot Introduction/Purpose: Implant component positioning is considered as an important factor in function and longevity in total ankle arthroplasty (TAA). However, accurate and repeatable positioning remains a limitation with current techniques and instrumentation. In addition, further investigation is needed to objectively define the optimum component positioning. Cadaveric gait simulation is a valuable tool for investigating foot and ankle joint mechanics during functional tasks such as the stance phase of gait. The objective of this study was to investigate the functional axis of rotation of the native ankle joint during simulated gait. Methods: The stance phase of healthy gait was simulated with six mid-tibia cadaveric specimens using a previously validated device and methodology. A robotic platform reproduced tibial-ground kinematics by moving a force plate relative to the stationary specimen while physiologic loads were applied to the extrinsic tendons to actuate the foot. (Figure 1A). Ankle kinematics were measured from reflective markers attached to the tibia and talus via surgical pins. The helical axes of rotation of the talus with respect to the tibia was calculated during three portions of stance: initial plantarflexion during earlier-stance after heal strike, dorsiflexion during mid-stance, and final plantarflexion during late-stance. The position and orientation of these kinematic-defined axes of rotation were compared to the transmalleolar axis and reduced to its anteroposterior position and transverse plane angle (Figure 1B). Results: Analyses revealed that ankle joint functional axis of rotation varied from the anatomic reference throughout stance. The kinematic center of rotation was located 16.4 ± 5.8 mm, 16.5 ± 6.6 mm, and 15.6 ± 6.5 mm anterior to the transmalleolar axis during early-, mid- and late-portions of stance, respectively. Conclusion: This study revealed that the position of the flexion-extension axis varies greatly between specimens during simulated gait. While previous reports have suggested that the transmalleolar axis is an acceptable approximation for the ankle joint center, these findings suggest that further research in warranted to better describe the complex tibiotalar kinematics. This work may provide future insight to guide implant design and advance techniques, to better place articular constraints of a total ankle in the native center of rotation of the joint.


2012 ◽  
Vol 15 (02) ◽  
pp. 1250011
Author(s):  
Thomas A. Abelew ◽  
Brian J. Cuda ◽  
Jonathan E. Koontz ◽  
Julia C. Stell ◽  
Marie A. Johanson

Purpose: Differences in muscle activity have been observed between men and women in numerous lower extremity muscles in a variety of activities. These differences may be related to observed differences in the incidence of injuries between men and women. The purpose of this work is to determine if gender had an effect on the activity of the medial and lateral gastrocnemius muscles during the early part of the stance phase of gait. Method: An observational cohort study was set up using sixteen volunteers (9 men and 7 women, mean age = 27 years) with less than 5° of passive ankle-dorsiflexion range of motion. Maximum dorsiflexion, maximum knee flexion, stance time and EMG magnitude were measured for both men and women during early stance (heel strike to heel off). Results: EMG amplitude of the LG muscle in women was significantly higher than that of men. No significant differences were observed between men and women for maximum dorsiflexion, maximum knee flexion or stance time. Conclusions: A gender difference in gastrocnemius muscle EMG magnitude exists that is independent of knee and ankle kinematics and walking speed.


Medicina ◽  
2019 ◽  
Vol 55 (12) ◽  
pp. 756
Author(s):  
Takashi Fukaya ◽  
Hirotaka Mutsuzaki ◽  
Koichi Mori

Background and Objectives: The purpose of this study was to compare the side-to-side differences in knee joint movement and moment for the degree of pain in the walking stance phase in patients with bilateral knee osteoarthritis (KOA) of comparable severity. We hypothesized that knee joint movement and moment on the side with strong pain were lower compared with the side with weak pain. Materials and Methods: We included 11 patients diagnosed with bilateral severe KOA. In all patients’ left and right knees, the Kellgren–Lawrence radiographic scoring system grade was level 4, and the femorotibial angle and knee range of motion were equivalent. Following patients’ interviews with an orthopedic surgeon, we performed a comparative study with KOA with strong pain (KOAs) as the strong painful side and KOA with weak pain (KOAw) as the weak painful side. Data for changes in bilateral knee joint angles in three dimensions during the stance phase and bilateral knee sagittal and frontal moments exerted in the early and late stance phases were extracted from kinematics and kinetics analyses. Results: Three-dimensional joint movements in the knee joint were not significantly different in all phases between KOAs and KOAw. Knee extensor moment in the early stance phase in KOAs was significantly smaller than that in KOAw. Knee abductor moment in the early and late stance phase was not significantly different between KOAs and KOAw. Conclusions: Although we found no difference in joint motion in bilateral knee joints, knee extensor moment on the side with strong pain was decreased. In patients with bilateral severe KOA, it was suggested that the magnitude of knee pain contributed to the decrease in knee joint function.


2002 ◽  
Vol 15 (01) ◽  
pp. 15-17 ◽  
Author(s):  
W. H. Singleton ◽  
J. L. Lanovaz ◽  
Marta Prades ◽  
Hilary M. Clayton

SummaryThe objectives were to measure sagittal plane kinematics and kinetics of the forelimb pastern joint during the stance phase at the trot. Sagittal plane video (200 Hz) and force (1,000 Hz) recordings were analyzed from four trials of six sound horses trotting in hand. Kinematic and force data were used to calculate net joint moments and joint powers. The pastern joint showed maximal flexion (155.3 ± 11.0°) at 34% stance and maximal extension (190.2 ± 3.8°) at 93% stance. Energy was absorbed on the palmar aspect throughout stance, with peak energy absorption occurring in the second half of the stance. It was concluded that the primary function of the pastern joint was to act as an energy damper.


2010 ◽  
Vol 31 (4) ◽  
pp. 502-505 ◽  
Author(s):  
Johanna E. Bischof ◽  
Alicia N. Abbey ◽  
Bavornrit Chuckpaiwong ◽  
James A. Nunley ◽  
Robin M. Queen

Sign in / Sign up

Export Citation Format

Share Document